Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Suppose that 
sin alpha=(3)/(sqrt13) and 
0^(@) < alpha < 90^(@)
Find the exact values of 
cos ((alpha)/(2)) and 
tan ((alpha)/(2)).

cos ((alpha)/(2))=

tan ((alpha)/(2))=

Suppose that sinα=313 \sin \alpha=\frac{3}{\sqrt{13}} and 0<α<90 0^{\circ}<\alpha<90^{\circ} \newlineFind the exact values of cosα2 \cos \frac{\alpha}{2} and tanα2 \tan \frac{\alpha}{2} .\newlinecosα2= \cos \frac{\alpha}{2}= \newlinetanα2= \tan \frac{\alpha}{2}=

Full solution

Q. Suppose that sinα=313 \sin \alpha=\frac{3}{\sqrt{13}} and 0<α<90 0^{\circ}<\alpha<90^{\circ} \newlineFind the exact values of cosα2 \cos \frac{\alpha}{2} and tanα2 \tan \frac{\alpha}{2} .\newlinecosα2= \cos \frac{\alpha}{2}= \newlinetanα2= \tan \frac{\alpha}{2}=
  1. Given Information: We are given that sin(α)=313\sin(\alpha) = \frac{3}{\sqrt{13}} and α\alpha is in the first quadrant (0<α<90)(0^\circ < \alpha < 90^\circ). To find cos(α/2)\cos(\alpha/2) and tan(α/2)\tan(\alpha/2), we can use the half-angle formulas for sine and cosine. The half-angle formula for cosine is:\newlinecos(α/2)=±(1+cos(α)2)\cos(\alpha/2) = \pm\sqrt{\left(\frac{1 + \cos(\alpha)}{2}\right)}\newlineSince α\alpha is in the first quadrant, cos(α)\cos(\alpha) will be positive, and since we are looking for cos(α/2)\cos(\alpha/2) in the first or second quadrant (because α/2\alpha/2 will be less than 9090^\circ), we will choose the positive square root.\newlineFirst, we need to find cos(α)\cos(\alpha) using the Pythagorean identity:\newlinecos2(α)+sin2(α)=1\cos^2(\alpha) + \sin^2(\alpha) = 1\newlinecos2(α)=1sin2(α)\cos^2(\alpha) = 1 - \sin^2(\alpha)\newlinecos2(α)=1(313)2\cos^2(\alpha) = 1 - \left(\frac{3}{\sqrt{13}}\right)^2\newlinecos2(α)=1913\cos^2(\alpha) = 1 - \frac{9}{13}\newlinecos2(α)=1313913\cos^2(\alpha) = \frac{13}{13} - \frac{9}{13}\newlinecos2(α)=413\cos^2(\alpha) = \frac{4}{13}\newlineα\alpha11\newlineα\alpha22
  2. Find cos(α/2)\cos(\alpha/2): Now we can find cos(α/2)\cos(\alpha/2) using the half-angle formula:\newlinecos(α/2)=±(1+cos(α))/2\cos(\alpha/2) = \pm\sqrt{(1 + \cos(\alpha))/2}\newlinecos(α/2)=(1+2/13)/2\cos(\alpha/2) = \sqrt{(1 + 2/\sqrt{13})/2}\newlinecos(α/2)=(13/13+2/13)/2\cos(\alpha/2) = \sqrt{(\sqrt{13}/\sqrt{13} + 2/\sqrt{13})/2}\newlinecos(α/2)=(13+2)/213\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)/2\sqrt{13}}\newlinecos(α/2)=(13+2)/(213)\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)/(2\sqrt{13})}\newlinecos(α/2)=(13+2)13/(21313)\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)\sqrt{13}/(2\sqrt{13}\sqrt{13})}\newlinecos(α/2)=(13+2)13/(26)\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)\sqrt{13}/(26)}\newlinecos(α/2)=(13+213)/26\cos(\alpha/2) = \sqrt{(13 + 2\sqrt{13})/26}\newlinecos(α/2)=(13+213)/26\cos(\alpha/2) = \sqrt{(13 + 2\sqrt{13})/26}
  3. Find tan(α/2)\tan(\alpha/2): Next, we will find tan(α/2)\tan(\alpha/2) using the half-angle formula for tangent, which is:\newlinetan(α/2)=±(1cos(α))/(1+cos(α))\tan(\alpha/2) = \pm\sqrt{(1 - \cos(\alpha))/(1 + \cos(\alpha))}\newlineSince α\alpha is in the first quadrant, tan(α)\tan(\alpha) will be positive, and we will choose the positive square root for tan(α/2)\tan(\alpha/2).\newlinetan(α/2)=(1cos(α))/(1+cos(α))\tan(\alpha/2) = \sqrt{(1 - \cos(\alpha))/(1 + \cos(\alpha))}\newlinetan(α/2)=(12/13)/(1+2/13)\tan(\alpha/2) = \sqrt{(1 - 2/\sqrt{13})/(1 + 2/\sqrt{13})}\newlinetan(α/2)=(13/132/13)/(13/13+2/13)\tan(\alpha/2) = \sqrt{(\sqrt{13}/\sqrt{13} - 2/\sqrt{13})/(\sqrt{13}/\sqrt{13} + 2/\sqrt{13})}\newlinetan(α/2)=(132)/(13+2)\tan(\alpha/2) = \sqrt{(\sqrt{13} - 2)/(\sqrt{13} + 2)}\newlinetan(α/2)\tan(\alpha/2)00\newlinetan(α/2)\tan(\alpha/2)11\newlinetan(α/2)\tan(\alpha/2)11

More problems from Evaluate functions