Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sqrt(10^(6)(10^(6)+1)(10^(6)+2)(10^(6)+3)+1)

106(106+1)(106+2)(106+3)+1 \sqrt{10^{6}\left(10^{6}+1\right)\left(10^{6}+2\right)\left(10^{6}+3\right)+1}

Full solution

Q. 106(106+1)(106+2)(106+3)+1 \sqrt{10^{6}\left(10^{6}+1\right)\left(10^{6}+2\right)\left(10^{6}+3\right)+1}
  1. Given Expression Analysis: We are given the expression (106(106+1)(106+2)(106+3)+1)\sqrt{(10^{6}(10^{6}+1)(10^{6}+2)(10^{6}+3)+1)}. Notice that the expression inside the square root is very close to the form of a squared term, specifically (a2+b2)(a^2 + b^2) where aa is the product of the four terms and bb is 11. We will check if this expression can be rewritten as a perfect square.
  2. Denoting Terms: Let's denote 10610^{6} as 'aa' for simplicity. Then the expression inside the square root becomes (a(a+1)(a+2)(a+3)+1)(a(a+1)(a+2)(a+3)+1). We want to see if this can be expressed as (something)2(\text{something})^2.
  3. Factoring Attempt: We can try to factor the expression in the form of a2+b2a^2 + b^2 by looking for a pattern. The expression a(a+1)(a+2)(a+3)+1a(a+1)(a+2)(a+3)+1 resembles the expansion of a2+1a^2 + 1^22 = a^44 + 22a^22 + 11, but with extra terms involving 'a'. We need to check if the given expression can be factored into a perfect square.
  4. Comparison with Perfect Squares: Let's expand (a2+1)2(a^2 + 1)^2 to see if it matches our expression:\newline(a2+1)2=a4+2a2+1(a^2 + 1)^2 = a^4 + 2a^2 + 1\newlineNow, let's compare this with our expression a(a+1)(a+2)(a+3)+1a(a+1)(a+2)(a+3)+1:\newlinea(a+1)(a+2)(a+3)=a4+6a3+11a2+6aa(a+1)(a+2)(a+3) = a^4 + 6a^3 + 11a^2 + 6a\newlineAdding 11 to both gives us a4+6a3+11a2+6a+1a^4 + 6a^3 + 11a^2 + 6a + 1.
  5. Adjusting for Perfect Square: We can see that the expression a4+6a3+11a2+6a+1a^4 + 6a^3 + 11a^2 + 6a + 1 is not a perfect square because it does not match the expansion of (a2+1)2(a^2 + 1)^2. However, we can notice that the expression is very close to (a2+a+1)2(a^2 + a + 1)^2, which expands to a4+2a3+3a2+2a+1a^4 + 2a^3 + 3a^2 + 2a + 1. Let's compare this with our expression.
  6. Adding and Subtracting Terms: Expanding (a2+a+1)2(a^2 + a + 1)^2 gives us:\newline(a2+a+1)2=a4+2a3+3a2+2a+1(a^2 + a + 1)^2 = a^4 + 2a^3 + 3a^2 + 2a + 1\newlineComparing this with our expression a4+6a3+11a2+6a+1a^4 + 6a^3 + 11a^2 + 6a + 1, we see that the coefficients of a3a^3 and a2a^2 are larger in our expression, and the coefficient of aa is smaller.
  7. Grouping for Perfect Square: We need to adjust the terms to make our expression a perfect square. Let's try adding and subtracting the same value inside the square root to create a perfect square without changing the value of the expression. We can add and subtract (3a3+3a2+a)(3a^3 + 3a^2 + a), which is the difference between our expression and (a2+a+1)2(a^2 + a + 1)^2.
  8. Taking Square Root: Adding and subtracting (3a3+3a2+a)(3a^3 + 3a^2 + a) inside the square root gives us:\newlinea4+6a3+11a2+6a+1+3a3+3a2+a3a33a2a\sqrt{a^4 + 6a^3 + 11a^2 + 6a + 1 + 3a^3 + 3a^2 + a - 3a^3 - 3a^2 - a}\newlineThis simplifies to:\newline(a4+6a3+11a2+6a+1)+(3a3+3a2+a)(3a3+3a2+a)\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) - (3a^3 + 3a^2 + a)}
  9. Substitution and Final Expression: Now, we can group the terms to form a perfect square:\newline(a4+6a3+11a2+6a+1)+(3a3+3a2+a)(3a3+3a2+a)\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) - (3a^3 + 3a^2 + a)}\newline= (a4+6a3+11a2+6a+1)+(3a3+3a2+a)+1(3a3+3a2+a)1\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) + 1 - (3a^3 + 3a^2 + a) - 1}\newline= (a2+a+1)2\sqrt{(a^2 + a + 1)^2}
  10. Substitution and Final Expression: Now, we can group the terms to form a perfect square:\newline(a4+6a3+11a2+6a+1)+(3a3+3a2+a)(3a3+3a2+a)\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) - (3a^3 + 3a^2 + a)}\newline= (a4+6a3+11a2+6a+1)+(3a3+3a2+a)+1(3a3+3a2+a)1\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) + 1 - (3a^3 + 3a^2 + a) - 1}\newline= (a2+a+1)2\sqrt{(a^2 + a + 1)^2}Since we have a perfect square under the square root, we can take the square root of the expression:\newline(a2+a+1)2=a2+a+1\sqrt{(a^2 + a + 1)^2} = a^2 + a + 1
  11. Substitution and Final Expression: Now, we can group the terms to form a perfect square:\newline(a4+6a3+11a2+6a+1)+(3a3+3a2+a)(3a3+3a2+a)\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) - (3a^3 + 3a^2 + a)}\newline= (a4+6a3+11a2+6a+1)+(3a3+3a2+a)+1(3a3+3a2+a)1\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) + 1 - (3a^3 + 3a^2 + a) - 1}\newline= (a2+a+1)2\sqrt{(a^2 + a + 1)^2}Since we have a perfect square under the square root, we can take the square root of the expression:\newline(a2+a+1)2=a2+a+1\sqrt{(a^2 + a + 1)^2} = a^2 + a + 1Now, we substitute back the value of 'a' which is 10610^{6}:\newlinea2+a+1=(106)2+106+1a^2 + a + 1 = (10^{6})^2 + 10^{6} + 1\newline= 1012+106+110^{12} + 10^{6} + 1
  12. Substitution and Final Expression: Now, we can group the terms to form a perfect square:\newline(a4+6a3+11a2+6a+1)+(3a3+3a2+a)(3a3+3a2+a)\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) - (3a^3 + 3a^2 + a)}\newline= (a4+6a3+11a2+6a+1)+(3a3+3a2+a)+1(3a3+3a2+a)1\sqrt{(a^4 + 6a^3 + 11a^2 + 6a + 1) + (3a^3 + 3a^2 + a) + 1 - (3a^3 + 3a^2 + a) - 1}\newline= (a2+a+1)2\sqrt{(a^2 + a + 1)^2}Since we have a perfect square under the square root, we can take the square root of the expression:\newline(a2+a+1)2=a2+a+1\sqrt{(a^2 + a + 1)^2} = a^2 + a + 1Now, we substitute back the value of 'a' which is 10610^{6}:\newlinea2+a+1=(106)2+106+1a^2 + a + 1 = (10^{6})^2 + 10^{6} + 1\newline= 1012+106+110^{12} + 10^{6} + 1The final expression is 1012+106+110^{12} + 10^{6} + 1, which is the value of the original expression under the square root.

More problems from Simplify the product of two radical expressions having same variable