Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.\newliney=x2+23x50y = x^2 + 23x - 50\newliney=23x+71y = 23x + 71\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)

Full solution

Q. Solve the system of equations.\newliney=x2+23x50y = x^2 + 23x - 50\newliney=23x+71y = 23x + 71\newlineWrite the coordinates in exact form. Simplify all fractions and radicals.\newline(______,______)\newline(______,______)
  1. Set Equations Equal: Set the two equations equal to each other since they both equal yy.y=x2+23x50y = x^2 + 23x - 50y=23x+71y = 23x + 71So, x2+23x50=23x+71x^2 + 23x - 50 = 23x + 71
  2. Subtract to Standard Form: Subtract 23x23x from both sides to get the quadratic equation in standard form.\newlinex2+23x5023x=23x+7123xx^2 + 23x - 50 - 23x = 23x + 71 - 23x\newlineThis simplifies to:\newlinex250=71x^2 - 50 = 71
  3. Add to Isolate x2x^2: Add 5050 to both sides to isolate the x2x^2 term.\newlinex250+50=71+50x^2 - 50 + 50 = 71 + 50\newlineThis simplifies to:\newlinex2=121x^2 = 121
  4. Take Square Root: Take the square root of both sides to solve for xx.x2=±121\sqrt{x^2} = \pm\sqrt{121}This gives us:x=±11x = \pm11
  5. Substitute x Values: Substitute x=11x = 11 into one of the original equations to find the corresponding yy value.\newlineUsing y=23x+71y = 23x + 71, we get:\newliney=23(11)+71y = 23(11) + 71\newliney=253+71y = 253 + 71\newliney=324y = 324
  6. Find Corresponding y: Substitute x=11x = -11 into the same equation to find the other corresponding y value.\newliney=23(11)+71y = 23(-11) + 71\newliney=253+71y = -253 + 71\newliney=182y = -182
  7. Write as Coordinate Points: Write the solution as coordinate points.\newlineThe coordinate points are (11,324)(11, 324) and (11,182)(-11, -182).

More problems from Solve a nonlinear system of equations