Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=y^(-1)x^(-3)
Choose 1 answer:
(A) 
y=+-sqrt((x^(4))/(2)+C)
(B) 
y=+-sqrt((x^(4))/(2))+C
(C) 
y=+-sqrt(-(1)/(x^(2)))+C
(D) 
y=+-sqrt(-(1)/(x^(2))+C)

Solve the equation.\newlinedydx=y1x3 \frac{d y}{d x}=y^{-1} x^{-3} \newlineChoose 11 answer:\newline(A) y=±x42+C y= \pm \sqrt{\frac{x^{4}}{2}+C} \newline(B) y=±x42+C y= \pm \sqrt{\frac{x^{4}}{2}}+C \newline(C) y=±1x2+C y= \pm \sqrt{-\frac{1}{x^{2}}}+C \newline(D) y=±1x2+C y= \pm \sqrt{-\frac{1}{x^{2}}+C}

Full solution

Q. Solve the equation.\newlinedydx=y1x3 \frac{d y}{d x}=y^{-1} x^{-3} \newlineChoose 11 answer:\newline(A) y=±x42+C y= \pm \sqrt{\frac{x^{4}}{2}+C} \newline(B) y=±x42+C y= \pm \sqrt{\frac{x^{4}}{2}}+C \newline(C) y=±1x2+C y= \pm \sqrt{-\frac{1}{x^{2}}}+C \newline(D) y=±1x2+C y= \pm \sqrt{-\frac{1}{x^{2}}+C}
  1. Separate Variables: We are given the differential equation dydx=y1x3\frac{dy}{dx} = y^{-1}x^{-3}. To solve this, we will separate the variables yy and xx to integrate them separately.\newlineRearrange the equation to separate variables:\newlineydydx=x3y \cdot \frac{dy}{dx} = x^{-3}
  2. Integrate Separately: Now integrate both sides with respect to their respective variables:\newlineydy=x3dx\int y \, dy = \int x^{-3} \, dx
  3. Perform Integration: Perform the integration on both sides:\newline(12)y2=(12)x2+C(\frac{1}{2})y^2 = -(\frac{1}{2})x^{-2} + C\newlinewhere CC is the constant of integration.
  4. Solve for yy: Now we solve for yy by taking the square root of both sides:\newliney=±(1x2)+Cy = \pm\sqrt{-(\frac{1}{x^2}) + C}
  5. Check Answer Choices: We check the answer choices to see which one matches our solution:\newline(A) y=±(x42)+Cy = \pm\sqrt{\left(\frac{x^{4}}{2}\right) + C} - Incorrect, does not match our solution.\newline(B) y=±(x42)+Cy = \pm\sqrt{\left(\frac{x^{4}}{2}\right)} + C - Incorrect, does not match our solution.\newline(C) y=±(1x2)+Cy = \pm\sqrt{-\left(\frac{1}{x^{2}}\right)} + C - Incorrect, the constant CC should be inside the square root.\newline(D) y=±(1x2)+Cy = \pm\sqrt{-\left(\frac{1}{x^{2}}\right) + C} - Correct, matches our solution.

More problems from Find derivatives of using multiple formulae