Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=xe^(-y)+10e^(-y)
Choose 1 answer:
(A) 
y=(x^(2))/(2)+10 x+C
(B) 
y=-ln(-(x^(2))/(2)-10 x+C)
(C) 
y=ln((x^(2))/(2)+10 x+C)
(D) 
y=-ln(-(x^(2))/(2)-10 x)+C

Solve the equation.\newlinedydx=xey+10ey \frac{d y}{d x}=x e^{-y}+10 e^{-y} \newlineChoose 11 answer:\newline(A) y=x22+10x+C y=\frac{x^{2}}{2}+10 x+C \newline(B) y=ln(x2210x+C) y=-\ln \left(-\frac{x^{2}}{2}-10 x+C\right) \newline(C) y=ln(x22+10x+C) y=\ln \left(\frac{x^{2}}{2}+10 x+C\right) \newline(D) y=ln(x2210x)+C y=-\ln \left(-\frac{x^{2}}{2}-10 x\right)+C

Full solution

Q. Solve the equation.\newlinedydx=xey+10ey \frac{d y}{d x}=x e^{-y}+10 e^{-y} \newlineChoose 11 answer:\newline(A) y=x22+10x+C y=\frac{x^{2}}{2}+10 x+C \newline(B) y=ln(x2210x+C) y=-\ln \left(-\frac{x^{2}}{2}-10 x+C\right) \newline(C) y=ln(x22+10x+C) y=\ln \left(\frac{x^{2}}{2}+10 x+C\right) \newline(D) y=ln(x2210x)+C y=-\ln \left(-\frac{x^{2}}{2}-10 x\right)+C
  1. Recognize Separable Equation: Recognize that the given differential equation is separable, meaning we can separate the variables yy and xx on different sides of the equation.\newlinedydx=xey+10ey\frac{dy}{dx} = x e^{-y} + 10 e^{-y}\newlineWe can write this as eydy=(x+10)dxe^{y}dy = (x + 10)dx.
  2. Integrate with Respect: Integrate both sides of the equation with respect to their respective variables.\newlineeydy=(x+10)dx\int e^{y} \, dy = \int (x + 10) \, dx
  3. Perform Integration: Perform the integration.\newlineThe integral of eye^{y} with respect to yy is eye^{y}, and the integral of (x+10)(x + 10) with respect to xx is (x2)/2+10x(x^2)/2 + 10x.\newlineSo we have ey=(x2)/2+10x+Ce^{y} = (x^2)/2 + 10x + C, where CC is the constant of integration.
  4. Solve for y: Solve for y by taking the natural logarithm of both sides.\newliney=ln(x22+10x+C)y = \ln(\frac{x^2}{2} + 10x + C)
  5. Check Answer Choices: Check the answer choices to see which one matches our solution.\newlineThe correct answer is (C) y=ln(x22+10x+C)y = \ln\left(\frac{x^2}{2} + 10x + C\right).

More problems from Find derivatives of using multiple formulae