Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=8x^(3)y-8xy
Choose 1 answer:
(A) 
y=Ce^(2x^(4)-4x^(2))
(B) 
y=e^(2x^(4)-4x^(2))+C
(C) 
y=2x^(4)-4x^(2)+C
(D) 
y=C(2x^(4)-4x^(2))

Solve the equation.\newlinedydx=8x3y8xy \frac{d y}{d x}=8 x^{3} y-8 x y \newlineChoose 11 answer:\newline(A) y=Ce2x44x2 y=C e^{2 x^{4}-4 x^{2}} \newline(B) y=e2x44x2+C y=e^{2 x^{4}-4 x^{2}}+C \newline(C) y=2x44x2+C y=2 x^{4}-4 x^{2}+C \newline(D) y=C(2x44x2) y=C\left(2 x^{4}-4 x^{2}\right)

Full solution

Q. Solve the equation.\newlinedydx=8x3y8xy \frac{d y}{d x}=8 x^{3} y-8 x y \newlineChoose 11 answer:\newline(A) y=Ce2x44x2 y=C e^{2 x^{4}-4 x^{2}} \newline(B) y=e2x44x2+C y=e^{2 x^{4}-4 x^{2}}+C \newline(C) y=2x44x2+C y=2 x^{4}-4 x^{2}+C \newline(D) y=C(2x44x2) y=C\left(2 x^{4}-4 x^{2}\right)
  1. Recognize type of differential equation: Recognize the type of differential equation.\newlineThe given differential equation is of the form dydx=f(x)y\frac{dy}{dx} = f(x)y, which suggests it is a first-order linear homogeneous differential equation and can be solved using separation of variables or by recognizing it as a separable differential equation.
  2. Separate variables: Separate variables.\newlineTo solve the equation, we need to separate the variables yy and xx. We can do this by dividing both sides by yy and then dividing by 8x38x8x^3 - 8x to get the yy terms on one side and the xx terms on the other side.\newlinedyy=(8x38x)dx\frac{dy}{y} = (8x^3 - 8x)dx
  3. Simplify the equation: Simplify the equation.\newlineWe can factor out 8x8x from the right side to simplify the equation.\newlinedyy=8x(x21)dx\frac{dy}{y} = 8x(x^2 - 1)dx
  4. Integrate both sides: Integrate both sides.\newlineNow we integrate both sides of the equation to find the solution.\newline(1y)(dy)=8x(x21)(dx)\int(\frac{1}{y})(dy) = \int 8x(x^2 - 1)(dx)\newlineThe left side integrates to lny\ln|y|, and the right side requires integration by parts or recognizing it as a standard polynomial integral.\newlinelny=8x3(dx)8x(dx)\ln|y| = \int 8x^3(dx) - \int 8x(dx)\newlinelny=2x44x2+C\ln|y| = 2x^4 - 4x^2 + C
  5. Solve for y: Solve for y.\newlineTo solve for y, we exponentiate both sides of the equation.\newlineelny=e2x44x2+Ce^{\ln|y|} = e^{2x^4 - 4x^2 + C}\newliney=e2x44x2eCy = e^{2x^4 - 4x^2} \cdot e^C\newlineSince eCe^C is just a constant, we can denote it as CC'.\newliney=Ce2x44x2y = C'e^{2x^4 - 4x^2}
  6. Determine correct answer: Determine the correct answer from the given options.\newlineComparing our solution to the answer choices, we see that our solution matches with option (A) if we consider CC' as Ce2x44x2Ce^{2x^4 - 4x^2}.

More problems from Find derivatives of using multiple formulae