Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve

9sin^(2)(2x-(pi)/(4))+sin(4x-(pi)/(2))=8
in the interval 
0 < x < (pi)/(2)
Give your answers to one decimal place.
[2 mark

Solve\newline9sin2(2xπ4)+sin(4xπ2)=8 9 \sin ^{2}\left(2 x-\frac{\pi}{4}\right)+\sin \left(4 x-\frac{\pi}{2}\right)=8 \newlinein the interval 0<x<π2 0<x<\frac{\pi}{2} \newlineGive your answers to one decimal place.\newline[22 mark

Full solution

Q. Solve\newline9sin2(2xπ4)+sin(4xπ2)=8 9 \sin ^{2}\left(2 x-\frac{\pi}{4}\right)+\sin \left(4 x-\frac{\pi}{2}\right)=8 \newlinein the interval 0<x<π2 0<x<\frac{\pi}{2} \newlineGive your answers to one decimal place.\newline[22 mark
  1. Rewrite Equation: First, let's rewrite the given equation in a more readable form:\newline9sin2(2xπ4)+sin(4xπ2)=89\sin^2(2x - \frac{\pi}{4}) + \sin(4x - \frac{\pi}{2}) = 8\newlineWe need to solve this trigonometric equation in the interval 0<x<π20 < x < \frac{\pi}{2}.
  2. Use Trigonometric Identities: We can use the double-angle identity for sine, which states that sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta). However, we need to be careful because the equation involves sin2\sin^2 and sin of a double angle, which is not directly the double-angle identity.
  3. Substitute Values: Let's first focus on the second term sin(4xπ2)\sin(4x - \frac{\pi}{2}). We can use the angle subtraction identity for sine, which states that sin(ab)=sin(a)cos(b)cos(a)sin(b)\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b). In this case, a=4xa = 4x and b=π2b = \frac{\pi}{2}, so we have:\newlinesin(4xπ2)=sin(4x)cos(π2)cos(4x)sin(π2)\sin(4x - \frac{\pi}{2}) = \sin(4x)\cos(\frac{\pi}{2}) - \cos(4x)\sin(\frac{\pi}{2})\newlineSince cos(π2)=0\cos(\frac{\pi}{2}) = 0 and sin(π2)=1\sin(\frac{\pi}{2}) = 1, this simplifies to:\newlinesin(4xπ2)=cos(4x)\sin(4x - \frac{\pi}{2}) = -\cos(4x)
  4. Apply Double-Angle Identity: Now, we can substitute cos(4x)-\cos(4x) back into the original equation: 9sin2(2xπ4)cos(4x)=89\sin^2(2x - \frac{\pi}{4}) - \cos(4x) = 8
  5. Simplify Equation: Next, we can use the double-angle identity for cosine, which states that cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta). We can apply this to cos(4x)\cos(4x) by considering 4x4x as 2(2x)2(2x):cos(4x)=12sin2(2x)\cos(4x) = 1 - 2\sin^2(2x)
  6. Combine sin2\sin^2 Terms: Substitute cos(4x)\cos(4x) with 12sin2(2x)1 - 2\sin^2(2x) in the equation:\newline9sin2(2xπ4)(12sin2(2x))=89\sin^2(2x - \frac{\pi}{4}) - (1 - 2\sin^2(2x)) = 8
  7. Isolate sin2\sin^2: Now, let's simplify the equation by distributing the negative sign and combining like terms:\newline9sin2(2xπ4)1+2sin2(2x)=89\sin^2(2x - \frac{\pi}{4}) - 1 + 2\sin^2(2x) = 8\newline9sin2(2xπ4)+2sin2(2x)=99\sin^2(2x - \frac{\pi}{4}) + 2\sin^2(2x) = 9
  8. Solve for Sin: Combine the sin2\sin^2 terms:\newline(9+2)sin2(2xπ4)=9(9 + 2)\sin^2(2x - \frac{\pi}{4}) = 9\newline11sin2(2xπ4)=911\sin^2(2x - \frac{\pi}{4}) = 9
  9. Find Angle: Divide both sides by 1111 to isolate sin2(2xπ4)\sin^2(2x - \frac{\pi}{4}): sin2(2xπ4)=911\sin^2(2x - \frac{\pi}{4}) = \frac{9}{11}
  10. Calculate xx: Take the square root of both sides to solve for sin(2xπ/4)\sin(2x - \pi/4):
    sin(2xπ/4)=±9/11\sin(2x - \pi/4) = \pm\sqrt{9/11}
    Since we are looking for solutions in the interval 0<x<π/20 < x < \pi/2, we only consider the positive square root because sin(2xπ/4)\sin(2x - \pi/4) will be positive in this interval.
    sin(2xπ/4)=9/11\sin(2x - \pi/4) = \sqrt{9/11}
  11. Round Answer: Now, we need to find the angle whose sine is 911\sqrt{\frac{9}{11}}. We can use a calculator to find this angle:\newlinesin(2xπ4)=9110.906\sin(2x - \frac{\pi}{4}) = \sqrt{\frac{9}{11}} \approx 0.906\newlineUsing the inverse sine function, we find:\newline2xπ4arcsin(0.906)2x - \frac{\pi}{4} \approx \arcsin(0.906)
  12. Round Answer: Now, we need to find the angle whose sine is 911\sqrt{\frac{9}{11}}. We can use a calculator to find this angle:\newlinesin(2xπ4)=9110.906\sin(2x - \frac{\pi}{4}) = \sqrt{\frac{9}{11}} \approx 0.906\newlineUsing the inverse sine function, we find:\newline2xπ4arcsin(0.906)2x - \frac{\pi}{4} \approx \arcsin(0.906)Using a calculator to find the arcsin(0.906)\arcsin(0.906), we get:\newline2xπ41.1192x - \frac{\pi}{4} \approx 1.119 (to three decimal places)
  13. Round Answer: Now, we need to find the angle whose sine is 911\sqrt{\frac{9}{11}}. We can use a calculator to find this angle:\newlinesin(2xπ4)=9110.906\sin(2x - \frac{\pi}{4}) = \sqrt{\frac{9}{11}} \approx 0.906\newlineUsing the inverse sine function, we find:\newline2xπ4arcsin(0.906)2x - \frac{\pi}{4} \approx \arcsin(0.906)Using a calculator to find the arcsin(0.906)\arcsin(0.906), we get:\newline2xπ41.1192x - \frac{\pi}{4} \approx 1.119 (to three decimal places)Now, we solve for xx:\newline2x1.119+π42x \approx 1.119 + \frac{\pi}{4}\newline2x1.119+0.7852x \approx 1.119 + 0.785 (since π40.785\frac{\pi}{4} \approx 0.785)\newline2x1.9042x \approx 1.904\newlinex1.9042x \approx \frac{1.904}{2}\newlinex0.952x \approx 0.952
  14. Round Answer: Now, we need to find the angle whose sine is 9/11\sqrt{9/11}. We can use a calculator to find this angle:\newlinesin(2xπ/4)=9/110.906\sin(2x - \pi/4) = \sqrt{9/11} \approx 0.906\newlineUsing the inverse sine function, we find:\newline2xπ/4arcsin(0.906)2x - \pi/4 \approx \arcsin(0.906) Using a calculator to find the arcsin(0.906)\arcsin(0.906), we get:\newline2xπ/41.1192x - \pi/4 \approx 1.119 (to three decimal places) Now, we solve for xx:\newline2x1.119+π/42x \approx 1.119 + \pi/4\newline2x1.119+0.7852x \approx 1.119 + 0.785 (since π/40.785\pi/4 \approx 0.785)\newline2x1.9042x \approx 1.904\newlinesin(2xπ/4)=9/110.906\sin(2x - \pi/4) = \sqrt{9/11} \approx 0.90600\newlinesin(2xπ/4)=9/110.906\sin(2x - \pi/4) = \sqrt{9/11} \approx 0.90611 We round our answer to one decimal place as requested:\newlinesin(2xπ/4)=9/110.906\sin(2x - \pi/4) = \sqrt{9/11} \approx 0.90622

More problems from Find roots using a calculator