Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Simplify the following expression to simplest form using only positive exponents.
\newline
(
8
x
18
y
6
)
−
2
3
\left(8 x^{18} y^{6}\right)^{-\frac{2}{3}}
(
8
x
18
y
6
)
−
3
2
\newline
Answer:
View step-by-step help
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Full solution
Q.
Simplify the following expression to simplest form using only positive exponents.
\newline
(
8
x
18
y
6
)
−
2
3
\left(8 x^{18} y^{6}\right)^{-\frac{2}{3}}
(
8
x
18
y
6
)
−
3
2
\newline
Answer:
Apply negative exponent rule:
Apply the
negative exponent rule
which states that
a
−
n
=
1
a
n
a^{-n} = \frac{1}{a^n}
a
−
n
=
a
n
1
.
(
8
x
18
y
6
)
−
2
3
=
1
(
8
x
18
y
6
)
2
3
(8x^{18}y^{6})^{-\frac{2}{3}} = \frac{1}{(8x^{18}y^{6})^{\frac{2}{3}}}
(
8
x
18
y
6
)
−
3
2
=
(
8
x
18
y
6
)
3
2
1
Apply power of a power rule:
Apply the power of a power rule which states that
(
a
m
)
n
=
a
m
∗
n
(a^m)^n = a^{m*n}
(
a
m
)
n
=
a
m
∗
n
.
1
(
8
x
18
y
6
)
2
3
=
1
8
2
3
×
x
18
×
2
3
×
y
6
×
2
3
\frac{1}{(8x^{18}y^{6})^{\frac{2}{3}}} = \frac{1}{8^{\frac{2}{3}} \times x^{18\times\frac{2}{3}} \times y^{6\times\frac{2}{3}}}
(
8
x
18
y
6
)
3
2
1
=
8
3
2
×
x
18
×
3
2
×
y
6
×
3
2
1
Calculate exponents:
Calculate the exponents for each term.
\newline
1
8
2
3
×
x
18
(
2
3
)
×
y
6
(
2
3
)
=
1
8
2
3
×
x
12
×
y
4
\frac{1}{8^{\frac{2}{3}} \times x^{18\left(\frac{2}{3}\right)} \times y^{6\left(\frac{2}{3}\right)}} = \frac{1}{8^{\frac{2}{3}} \times x^{12} \times y^{4}}
8
3
2
×
x
18
(
3
2
)
×
y
6
(
3
2
)
1
=
8
3
2
×
x
12
×
y
4
1
Simplify cube root of
8
8
8
:
Simplify the cube root of
8
8
8
which is
2
2
2
, and then raise it to the power of
2
2
2
.
\newline
1
(
8
2
3
∗
x
12
∗
y
4
)
=
1
(
2
2
∗
x
12
∗
y
4
)
\frac{1}{(8^{\frac{2}{3}} * x^{12} * y^{4})} = \frac{1}{(2^2 * x^{12} * y^{4})}
(
8
3
2
∗
x
12
∗
y
4
)
1
=
(
2
2
∗
x
12
∗
y
4
)
1
Calculate
2
2
2^2
2
2
:
Calculate
2
2
2^2
2
2
.
\newline
1
2
2
×
x
12
×
y
4
=
1
4
×
x
12
×
y
4
\frac{1}{2^2 \times x^{12} \times y^{4}} = \frac{1}{4 \times x^{12} \times y^{4}}
2
2
×
x
12
×
y
4
1
=
4
×
x
12
×
y
4
1
Write final expression:
Write the final expression with positive exponents.
\newline
1
4
⋅
x
12
⋅
y
4
=
1
4
x
12
y
4
\frac{1}{4 \cdot x^{12} \cdot y^{4}} = \frac{1}{4x^{12}y^{4}}
4
⋅
x
12
⋅
y
4
1
=
4
x
12
y
4
1
More problems from Simplify variable expressions using properties
Question
Combine the like terms to create an equivalent expression:
\newline
2
s
+
(
−
4
s
)
=
0
2s+(-4s)=\boxed{\phantom{0}}
2
s
+
(
−
4
s
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
6
p
)
=
□
-4p+(-6p)=\square
−
4
p
+
(
−
6
p
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
4
z
−
(
−
3
z
)
=
□
4z-(-3z)=\square
4
z
−
(
−
3
z
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
r
+
(
−
5
r
)
=
0
r+(-5r)=\boxed{\phantom{0}}
r
+
(
−
5
r
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
2
)
+
2
p
+
3
=
-4p+(-2)+2p+3=
−
4
p
+
(
−
2
)
+
2
p
+
3
=
Get tutor help
Posted 1 year ago
Question
Rewrite the expression in the form
k
⋅
z
n
k \cdot z^{n}
k
⋅
z
n
.
\newline
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).
\newline
3
z
4
⋅
3
z
3
4
=
3 \sqrt[4]{z} \cdot 3 z^{\frac{3}{4}}=
3
4
z
⋅
3
z
4
3
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
3
x
y=3^{x}
y
=
3
x
.
\newline
Find
d
2
y
d
x
2
\frac{d^{2} y}{d x^{2}}
d
x
2
d
2
y
\newline
d
2
y
d
x
2
=
\frac{d^{2} y}{d x^{2}}=
d
x
2
d
2
y
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
4
x
2
+
3
x
2
x
−
7
y=\frac{4 x^{2}+3 x}{2 x-7}
y
=
2
x
−
7
4
x
2
+
3
x
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Posted 1 year ago
Question
d
d
x
(
e
x
cos
(
x
)
)
=
\frac{d}{d x}\left(\frac{e^{x}}{\cos (x)}\right)=
d
x
d
(
c
o
s
(
x
)
e
x
)
=
Get tutor help
Posted 10 months ago
Question
Let
f
(
x
)
=
1
x
2
f(x)=\frac{1}{x^{2}}
f
(
x
)
=
x
2
1
.
\newline
f
′
(
5
)
=
f^{\prime}(5)=
f
′
(
5
)
=
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant