Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline983\frac{9}{-8 - \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator.\newline983\frac{9}{-8 - \sqrt{3}}
  1. Select Conjugate: Select the conjugate of 83-8 - \sqrt{3}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 83-8 - \sqrt{3}: 8+3-8 + \sqrt{3}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator to rationalize it.\newlineExpression to multiply: (8+3)(-8 + \sqrt{3})\newlineMultiply (9)×(8+3)(9) \times (-8 + \sqrt{3}) and (83)×(8+3)(-8 - \sqrt{3}) \times (-8 + \sqrt{3})\newline9×(8+3)/((83)×(8+3))9 \times (-8 + \sqrt{3}) / ((-8 - \sqrt{3}) \times (-8 + \sqrt{3}))
  3. Simplify Numerator: Simplify the numerator by distributing the 99.9×(8)+9×(3)=72+9×39 \times (-8) + 9 \times (\sqrt{3}) = -72 + 9 \times \sqrt{3}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(8)2(3)2(-8)^2 - (\sqrt{3})^2\newline= 6464 - 33\newline= 6161
  5. Write Simplified Expression: Write the simplified expression.\newline(72+93)/61(-72 + 9 \cdot \sqrt{3}) / 61\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates