Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline95+3\frac{9}{-5 + \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline95+3\frac{9}{-5 + \sqrt{3}}
  1. Identify Conjugate: Select the conjugate of 5+3-5 + \sqrt{3}.\newlineThe conjugate of a number of the form a+ba + \sqrt{b} is aba - \sqrt{b}. Therefore, the conjugate of 5+3-5 + \sqrt{3} is 53-5 - \sqrt{3}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator.\newline(9×(53))/((5+3)×(53))(9 \times (-5 - \sqrt{3}))/((-5 + \sqrt{3}) \times (-5 - \sqrt{3}))
  3. Simplify Numerator: Simplify the numerator.\newlineNow we distribute the 99 in the numerator across the conjugate.\newline9×(5)+9×(3)=45939 \times (-5) + 9 \times (-\sqrt{3}) = -45 - 9\sqrt{3}
  4. Simplify Denominator: Simplify the denominator.\newlineWe use the difference of squares formula, which states that (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.\newline(5)2(3)2=253=22(-5)^2 - (\sqrt{3})^2 = 25 - 3 = 22
  5. Write Simplified Expression: Write the simplified expression.\newlineNow we have the simplified numerator and denominator.\newline(4593)/22(-45 - 9\sqrt{3})/22\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates