Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline92+3\frac{9}{-2 + \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline92+3\frac{9}{-2 + \sqrt{3}}
  1. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newline(9×(23))/((2+3)×(23))(9 \times (-2 - \sqrt{3})) / ((-2 + \sqrt{3}) \times (-2 - \sqrt{3}))
  2. Simplify Numerator: Simplify the numerator by distributing 99 to both terms in the conjugate.9×(2)+9×(3)=18939 \times (-2) + 9 \times (-\sqrt{3}) = -18 - 9\sqrt{3}
  3. Simplify Denominator: Simplify the denominator by using the difference of squares formula, which is (ab)(a+b)=a2b2.(a - b)(a + b) = a^2 - b^2.\newline(2)2(3)2(-2)^2 - (\sqrt{3})^2\newline=43= 4 - 3\newline=1= 1
  4. Combine Numerator and Denominator: Combine the simplified numerator and denominator.\newline(1893)/1(-18 - 9\sqrt{3}) / 1\newlineSince dividing by 11 does not change the value, the expression simplifies to:\newline1893-18 - 9\sqrt{3}

More problems from Simplify radical expressions using conjugates