Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline78+5\frac{7}{-8 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator. \newline78+5\frac{7}{-8 + \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 8+5-8 + \sqrt{5}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 8+5-8 + \sqrt{5}: 85-8 - \sqrt{5}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by (-8 - \sqrt{5})/(-8 - \sqrt{5})\(\newline\).\newline(7(85))/((8+5)(85))(7 \cdot (-8 - \sqrt{5}))/((-8 + \sqrt{5}) \cdot (-8 - \sqrt{5}))
  3. Simplify Numerator: Simplify the numerator by distributing the 77.7×(8)7×(5)=567×57 \times (-8) - 7 \times (\sqrt{5}) = -56 - 7 \times \sqrt{5}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(8)2(5)2(-8)^2 - (\sqrt{5})^2\newline= 6464 - 55\newline= 5959
  5. Write Simplified Expression: Write the simplified expression. (5675)/59(-56 - 7 \sqrt{5}) / 59 This fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates