Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline76+5\frac{7}{-6 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline76+5\frac{7}{-6 + \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 6+5-6 + \sqrt{5}.\newlineConjugate of a number in the form a+ba + \sqrt{b} is aba - \sqrt{b}.\newlineTherefore, the conjugate of 6+5-6 + \sqrt{5} is 65-6 - \sqrt{5}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the fraction by (65)/(65)(-6 - \sqrt{5})/(-6 - \sqrt{5}).\newlineThis gives us (7(65))/((6+5)(65))(7 \cdot (-6 - \sqrt{5}))/((-6 + \sqrt{5}) \cdot (-6 - \sqrt{5})).
  3. Simplify Numerator: Simplify the numerator.\newlineMultiplying 77 by each term in the conjugate 65-6 - \sqrt{5} gives us:\newline7×(6)7×57 \times (-6) - 7 \times \sqrt{5}\newline=427×5= -42 - 7 \times \sqrt{5}.
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newlineThe denominator is in the form (a+b)(ab)(a + b)(a - b), which simplifies to a2b2a^2 - b^2.\newlineSo, (6+5)(65)(-6 + \sqrt{5}) * (-6 - \sqrt{5}) simplifies to:\newline(6)2(5)2(-6)^2 - (\sqrt{5})^2\newline=365= 36 - 5\newline=31= 31.
  5. Write Simplified Fraction: Write the simplified fraction.\newlineThe fraction now is (4275)/31(-42 - 7 \sqrt{5})/31.\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates