Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline6105\frac{6}{-10 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline6105\frac{6}{-10 - \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 105-10 - \sqrt{5}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 105-10 - \sqrt{5}: 10+5-10 + \sqrt{5}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the fraction by (-10 + \sqrt{5})/(-10 + \sqrt{5})\(\newline\).\newline6105×10+510+5\frac{6}{-10 - \sqrt{5}} \times \frac{-10 + \sqrt{5}}{-10 + \sqrt{5}}
  3. Simplify Numerator: Simplify the numerator by distributing the 66.6×(10+5)6 \times (-10 + \sqrt{5})=6×(10)+6×5= 6 \times (-10) + 6 \times \sqrt{5}=60+6×5= -60 + 6 \times \sqrt{5}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(105)(10+5)(-10 - \sqrt{5}) * (-10 + \sqrt{5})\newline= (10)2(5)2(-10)^2 - (\sqrt{5})^2\newline= 1005100 - 5\newline= 9595
  5. Write Simplified Fraction: Write the simplified fraction. (60+6×5)/95(-60 + 6 \times \sqrt{5})/95 This fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates