Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline56+2\frac{5}{-6 + \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator. \newline56+2\frac{5}{-6 + \sqrt{2}}
  1. Select Conjugate: Select the conjugate of 6+2-6 + \sqrt{2}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 6+2-6 + \sqrt{2}: 62-6 - \sqrt{2}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator to rationalize it. 56+2\frac{5}{-6 + \sqrt{2}} multiplied by 6262\frac{-6 - \sqrt{2}}{-6 - \sqrt{2}}
  3. Simplify Numerator: Simplify the numerator by distributing the 55 across the conjugate.5×(62)5 \times (-6 - \sqrt{2})=5×(6)5×(2)= 5 \times (-6) - 5 \times (\sqrt{2})=305×2= -30 - 5 \times \sqrt{2}
  4. Simplify Denominator: Simplify the denominator by using the difference of squares formula.\newline(6+2)(62)(-6 + \sqrt{2}) * (-6 - \sqrt{2})\newline=(6)2(2)2= (-6)^2 - (\sqrt{2})^2\newline=362= 36 - 2\newline=34= 34
  5. Combine Numerator and Denominator: Combine the simplified numerator and denominator.\newline(3052)/34(-30 - 5 \cdot \sqrt{2}) / 34\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates