Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline54+2\frac{5}{-4 + \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator. \newline54+2\frac{5}{-4 + \sqrt{2}}
  1. Identify Conjugate: Identify the conjugate of the denominator 4+2-4 + \sqrt{2}.\newlineThe conjugate of a number of the form a+ba + \sqrt{b} is aba - \sqrt{b}, and vice versa. Therefore, the conjugate of 4+2-4 + \sqrt{2} is 42-4 - \sqrt{2}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the fraction by a form of 11 that consists of the conjugate of the denominator over itself.\newline(54+2)×(4242)(\frac{5}{-4 + \sqrt{2}}) \times (\frac{-4 - \sqrt{2}}{-4 - \sqrt{2}})
  3. Distribute Numerator: Distribute the numerator.\newlineMultiply 55 by each term in the conjugate 42-4 - \sqrt{2}.\newline5×(4)+5×(2)5 \times (-4) + 5 \times (-\sqrt{2})\newline= 2052-20 - 5\sqrt{2}
  4. Expand Denominator: Expand the denominator using the difference of squares formula.\newline(-4 + \sqrt{2}) * (-4 - \sqrt{2}) = (-4)^2 - (\sqrt{2})^2\(\newline= 16 - 2\newline= 14\)
  5. Write Simplified Expression: Write the simplified expression.\newlinePlace the simplified numerator over the simplified denominator.\newline(2052)/14(-20 - 5\sqrt{2}) / 14\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates