Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline42+5\frac{4}{2 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline42+5\frac{4}{2 + \sqrt{5}}
  1. Identify Conjugate: Identify the conjugate of the denominator.\newlineThe conjugate of a binomial in the form of a+ba + \sqrt{b} is aba - \sqrt{b}. Therefore, the conjugate of the denominator 2+52 + \sqrt{5} is 252 - \sqrt{5}.
  2. Multiply by Conjugate Fraction: Multiply the original expression by a fraction equivalent to 11 that has the conjugate of the denominator as both the numerator and the denominator.\newlineTo rationalize the denominator, we multiply the original expression by (25)/(25)(2 - \sqrt{5})/(2 - \sqrt{5}).\newline(4/(2+5))((25)/(25))(4/(2 + \sqrt{5})) \cdot ((2 - \sqrt{5})/(2 - \sqrt{5}))
  3. Distribute Numerator: Distribute the numerator.\newlineMultiply 44 by each term in the conjugate (25)(2 - \sqrt{5}).\newline4×24×54 \times 2 - 4 \times \sqrt{5}\newline=845= 8 - 4\sqrt{5}
  4. Apply Difference of Squares: Apply the difference of squares formula to the denominator.\newline(2+5)(25)(2 + \sqrt{5})(2 - \sqrt{5}) is a difference of squares, which simplifies to:\newline22(5)22^2 - (\sqrt{5})^2\newline= 454 - 5\newline= 1-1
  5. Combine Results: Combine the results of Step 33 and Step 44 to get the final expression.\newline(845)/(1)(8 - 4\sqrt{5}) / (-1)\newlineWhen dividing by 1-1, we change the sign of the numerator.\newline8+45-8 + 4\sqrt{5}

More problems from Simplify radical expressions using conjugates