Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline33+5\frac{3}{-3 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator. \newline33+5\frac{3}{-3 + \sqrt{5}}
  1. Identify Conjugate: Select the conjugate of 3+5-3 + \sqrt{5}.\newlineThe conjugate of a number of the form a+ba + \sqrt{b} is aba - \sqrt{b}. Therefore, the conjugate of 3+5-3 + \sqrt{5} is 35-3 - \sqrt{5}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator.\newline(3(35))/((3+5)(35))(3 \cdot (-3 - \sqrt{5}))/((-3 + \sqrt{5}) \cdot (-3 - \sqrt{5}))
  3. Simplify Numerator: Simplify the numerator.\newlineNow we distribute the 33 in the numerator across the conjugate.\newline3×(3)+3×(5)3 \times (-3) + 3 \times (-\sqrt{5})\newline=935= -9 - 3\sqrt{5}
  4. Simplify Denominator: Simplify the denominator.\newlineWe use the difference of squares formula, which states that (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.\newline(3)2(5)2(-3)^2 - (\sqrt{5})^2\newline= 959 - 5\newline= 44
  5. Write Simplified Expression: Write the simplified expression.\newlineNow we have the simplified numerator and denominator.\newline(935)/4(-9 - 3\sqrt{5})/4\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates