Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline33+3\frac{3}{-3 + \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline33+3\frac{3}{-3 + \sqrt{3}}
  1. Multiply by conjugate: Multiply the numerator and the denominator by the conjugate of the denominator to rationalize it.\newline(3×(33))/((3+3)×(33))(3 \times (-3 - \sqrt{3}))/((-3 + \sqrt{3}) \times (-3 - \sqrt{3}))
  2. Simplify numerator: Simplify the numerator by distributing the 33.3×(3)+3×(3)=9333 \times (-3) + 3 \times (-\sqrt{3}) = -9 - 3\sqrt{3}
  3. Simplify denominator: Simplify the denominator by using the difference of squares formula (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2.\newline(3)2(3)2=93=6(-3)^2 - (\sqrt{3})^2 = 9 - 3 = 6
  4. Combine numerator and denominator: Combine the simplified numerator and denominator. (933)/6(-9 - 3\sqrt{3})/6
  5. Divide by denominator: Divide each term in the numerator by the denominator.\newline96336-\frac{9}{6} - \frac{3\sqrt{3}}{6}
  6. Simplify terms: Simplify each term.\newline3232-\frac{3}{2} - \frac{\sqrt{3}}{2}

More problems from Simplify radical expressions using conjugates