Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline3105\frac{3}{-10 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline3105\frac{3}{-10 - \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 105-10 - \sqrt{5}.\newlineThe conjugate of aba - \sqrt{b} is a+ba + \sqrt{b}.\newlineSo, the conjugate of 105-10 - \sqrt{5} is 10+5-10 + \sqrt{5}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by (10+5)/(10+5)(-10 + \sqrt{5})/(-10 + \sqrt{5}).\newlineThis gives us (3(10+5))/((105)(10+5))(3 \cdot (-10 + \sqrt{5}))/((-10 - \sqrt{5}) \cdot (-10 + \sqrt{5})).
  3. Simplify Numerator: Simplify the numerator.\newlineMultiplying 33 by each term in the conjugate 10+5-10 + \sqrt{5} gives us:\newline3×(10)+3×53 \times (-10) + 3 \times \sqrt{5}\newline=30+35= -30 + 3\sqrt{5}.
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newlineThe denominator is a difference of squares: (10)2(5)2(-10)^2 - (\sqrt{5})^2.\newlineCalculating each term gives us:\newline1005100 - 5\newline=95= 95.
  5. Write Simplified Expression: Write the simplified expression.\newlineThe simplified expression is (30+35)/95(-30 + 3\sqrt{5})/95.\newlineThis fraction can be further simplified by dividing each term in the numerator by 55, the greatest common divisor of the numerator and the denominator.
  6. Divide by Common Divisor: Simplify the fraction by dividing by the greatest common divisor.\newlineDividing each term in the numerator by 55 gives us:\newline(30/5)+(3/5)5(-30/5) + (3/5)\sqrt{5}\newline= 6+(3/5)5-6 + (3/5)\sqrt{5}.\newlineSo the final simplified expression is (6+(3/5)5)/95(-6 + (3/5)\sqrt{5})/95.
  7. Further Simplify Fraction: Simplify the fraction further by dividing the denominator.\newlineSince 9595 is divisible by 55, we can simplify the fraction by dividing the denominator by 55:\newline(6+(35)5)/(955)(-6 + (\frac{3}{5})\sqrt{5})/(\frac{95}{5})\newline=(6+(35)5)/19= (-6 + (\frac{3}{5})\sqrt{5})/19.

More problems from Simplify radical expressions using conjugates