Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline310+3\frac{3}{-10 + \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator.\newline310+3\frac{3}{-10 + \sqrt{3}}
  1. Find Conjugate: Select the conjugate of 10+3-10 + \sqrt{3}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 10+3-10 + \sqrt{3}: 103-10 - \sqrt{3}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by (103)/(103)(-10 - \sqrt{3})/(-10 - \sqrt{3}).\newline310+3×103103\frac{3}{-10 + \sqrt{3}} \times \frac{-10 - \sqrt{3}}{-10 - \sqrt{3}}
  3. Simplify Numerator: Simplify the numerator by distributing the multiplication.\newline3×(103)3 \times (-10 - \sqrt{3})\newline= 3×(10)+3×(3)3 \times (-10) + 3 \times (-\sqrt{3})\newline= 3033-30 - 3\sqrt{3}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(10+3)(103)(-10 + \sqrt{3}) * (-10 - \sqrt{3})\newline=(10)2(3)2= (-10)^2 - (\sqrt{3})^2\newline=1003= 100 - 3\newline=97= 97
  5. Write Final Expression: Write the simplified expression with the rationalized denominator.\newline(3033)/97(-30 - 3\sqrt{3})/97\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates