Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline23+2\frac{2}{-3 + \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator. \newline23+2\frac{2}{-3 + \sqrt{2}}
  1. Identify Conjugate of Denominator: Identify the conjugate of the denominator 3+2-3 + \sqrt{2}.\newlineThe conjugate of a+ba + \sqrt{b} is aba - \sqrt{b}, so the conjugate of 3+2-3 + \sqrt{2} is 32-3 - \sqrt{2}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by (-3 - \sqrt{2})/(-3 - \sqrt{2})\(\newline\).\newline23+2×3232\frac{2}{-3 + \sqrt{2}} \times \frac{-3 - \sqrt{2}}{-3 - \sqrt{2}}
  3. Distribute Numerator: Distribute the numerator.\newlineMultiply 22 by each term in the conjugate 32-3 - \sqrt{2}.\newline2×(3)2×22 \times (-3) - 2 \times \sqrt{2}\newline=622= -6 - 2\sqrt{2}
  4. Expand Denominator: Expand the denominator using the difference of squares formula.\newline(3+2)(32)(-3 + \sqrt{2}) * (-3 - \sqrt{2}) is a difference of squares which simplifies to (3)2(2)2(-3)^2 - (\sqrt{2})^2.\newline929 - 2\newline=7= 7
  5. Write Simplified Expression: Write the simplified expression.\newlineThe simplified expression with a rationalized denominator is (622)/7(-6 - 2\sqrt{2})/7.

More problems from Simplify radical expressions using conjugates