Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline222\frac{2}{2 - \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator.\newline222\frac{2}{2 - \sqrt{2}}
  1. Identify Conjugate of Denominator: Identify the conjugate of the denominator 222 - \sqrt{2}.\newlineThe conjugate of a number of the form aba - \sqrt{b} is a+ba + \sqrt{b}. Therefore, the conjugate of 222 - \sqrt{2} is 2+22 + \sqrt{2}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator.\newline2×(2+2)(22)×(2+2)\frac{2 \times (2 + \sqrt{2})}{(2 - \sqrt{2}) \times (2 + \sqrt{2})}
  3. Simplify Numerator: Simplify the numerator.\newlineMultiply 22 by each term in the conjugate.\newline2×2+2×22 \times 2 + 2 \times \sqrt{2}\newline= 4+224 + 2\sqrt{2}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(22)×(2+2)=22(2)2(2 - \sqrt{2}) \times (2 + \sqrt{2}) = 2^2 - (\sqrt{2})^2\newline=42= 4 - 2\newline=2= 2
  5. Write Simplified Expression: Write the simplified expression.\newlineThe simplified expression is (4+22)/2(4 + 2\sqrt{2}) / 2.
  6. Divide Numerator by Denominator: Simplify the expression by dividing each term in the numerator by the denominator.\newline(42)+(222)(\frac{4}{2}) + (\frac{2\sqrt{2}}{2})\newline= 2+22 + \sqrt{2}

More problems from Simplify radical expressions using conjugates