Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator.\newline210+5\frac{2}{-10 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator.\newline210+5\frac{2}{-10 + \sqrt{5}}
  1. Identify Conjugate of Denominator: Identify the conjugate of the denominator 10+5-10 + \sqrt{5}.\newlineThe conjugate of a+ba + \sqrt{b} is aba - \sqrt{b}, so the conjugate of 10+5-10 + \sqrt{5} is 105-10 - \sqrt{5}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the fraction by (105)/(105)(-10 - \sqrt{5})/(-10 - \sqrt{5}):\newline(2/(10+5))×((105)/(105))(2/(-10 + \sqrt{5})) \times ((-10 - \sqrt{5})/(-10 - \sqrt{5}))
  3. Distribute Multiplication in Numerator: Distribute the multiplication in the numerator.\newlineMultiply 22 by each term in the conjugate:\newline2×(10)=202 \times (-10) = -20\newline2×(5)=252 \times (-\sqrt{5}) = -2\sqrt{5}\newlineSo the numerator becomes 2025-20 - 2\sqrt{5}.
  4. Apply Difference of Squares: Apply the difference of squares in the denominator.\newlineThe product of a binomial and its conjugate is the difference of squares:\newline(10+5)(105)=(10)2(5)2(-10 + \sqrt{5}) * (-10 - \sqrt{5}) = (-10)^2 - (\sqrt{5})^2\newline(10)2=100(-10)^2 = 100\newline(5)2=5(\sqrt{5})^2 = 5\newlineSo the denominator becomes 1005100 - 5.
  5. Simplify Denominator: Simplify the denominator.\newlineSubtract 55 from 100100:\newline1005=95100 - 5 = 95\newlineSo the denominator simplifies to 9595.
  6. Write Simplified Expression: Write the simplified expression.\newlineThe fraction with the rationalized denominator is:\newline(2025)/95(-20 - 2\sqrt{5})/95

More problems from Simplify radical expressions using conjugates