Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline1063\frac{10}{-6 - \sqrt{3}}

Full solution

Q. Simplify. Rationalize the denominator. \newline1063\frac{10}{-6 - \sqrt{3}}
  1. Find Conjugate: Select the conjugate of 63-6 - \sqrt{3}.\newlineConjugate of aba - \sqrt{b}: a+ba + \sqrt{b}\newlineConjugate of 63-6 - \sqrt{3}: 6+3-6 + \sqrt{3}
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the expression by (-6 + \sqrt{3})/(-6 + \sqrt{3})\(\newline\).\newline(10/(63))×((6+3)/(6+3))(10/(-6 - \sqrt{3})) \times ((-6 + \sqrt{3})/(-6 + \sqrt{3}))
  3. Simplify Numerator: Simplify the numerator by distributing the multiplication.\newline10×(6+3)10 \times (-6 + \sqrt{3})\newline= 10×(6)+10×(3)10 \times (-6) + 10 \times (\sqrt{3})\newline= 60+103-60 + 10\sqrt{3}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(63)(6+3)(-6 - \sqrt{3}) * (-6 + \sqrt{3})\newline= (6)2(3)2(-6)^2 - (\sqrt{3})^2\newline= 36336 - 3\newline= 3333
  5. Write Simplified Expression: Write the simplified expression. (60+103)/33(-60 + 10\sqrt{3})/33 This fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates