Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline105+2\frac{10}{5 + \sqrt{2}}

Full solution

Q. Simplify. Rationalize the denominator. \newline105+2\frac{10}{5 + \sqrt{2}}
  1. Identify conjugate of denominator: Identify the conjugate of the denominator.\newlineThe conjugate of a number of the form a+ba + \sqrt{b} is aba - \sqrt{b}. Therefore, the conjugate of 5+25 + \sqrt{2} is 525 - \sqrt{2}.
  2. Multiply by conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineTo rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator.\newline10×(52)(5+2)×(52)\frac{10 \times (5 - \sqrt{2})}{(5 + \sqrt{2}) \times (5 - \sqrt{2})}
  3. Simplify numerator: Simplify the numerator.\newlineMultiply 1010 by each term in the conjugate.\newline10×510×210 \times 5 - 10 \times \sqrt{2}\newline=5010×2= 50 - 10 \times \sqrt{2}
  4. Simplify denominator: Simplify the denominator.\newlineUse the difference of squares formula, which states that (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.\newline(5)2(2)2(5)^2 - (\sqrt{2})^2\newline= 2525 - 22\newline= 2323
  5. Write final expression: Write the simplified expression.\newlineNow that we have simplified both the numerator and the denominator, we can write the final expression.\newline(5010×2)/23(50 - 10 \times \sqrt{2}) / 23\newlineThis fraction is already in simplest form.

More problems from Simplify radical expressions using conjugates