Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline102+5\frac{10}{2 + \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator. \newline102+5\frac{10}{2 + \sqrt{5}}
  1. Select Conjugate: Select the conjugate of 2+52 + \sqrt{5}. Conjugate of a+ba + \sqrt{b}: aba - \sqrt{b} Conjugate of 2+52 + \sqrt{5}: 252 - \sqrt{5}
  2. Multiply by Conjugate: Multiply the original expression by the conjugate over itself to rationalize the denominator.\newline102+5×2525\frac{10}{2 + \sqrt{5}} \times \frac{2 - \sqrt{5}}{2 - \sqrt{5}}
  3. Simplify Numerator: Simplify the numerator by distributing the 1010 to both terms in the conjugate.10×(25)10 \times (2 - \sqrt{5})=10×210×5= 10 \times 2 - 10 \times \sqrt{5}=2010×5= 20 - 10 \times \sqrt{5}
  4. Simplify Denominator: Simplify the denominator by using the difference of squares formula.\newline(2+5)×(25)(2 + \sqrt{5}) \times (2 - \sqrt{5})\newline=22(5)2= 2^2 - (\sqrt{5})^2\newline=45= 4 - 5\newline=1= -1
  5. Combine Numerator and Denominator: Combine the simplified numerator and denominator. \newline(20105)/(1)(20 - 10 \cdot \sqrt{5})/(-1)
  6. Final Simplified Expression: Since dividing by 1-1 simply changes the sign of the numerator, we can write the final simplified expression.20+10×5-20 + 10 \times \sqrt{5}

More problems from Simplify radical expressions using conjugates