Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Rationalize the denominator. \newline1025\frac{10}{2 - \sqrt{5}}

Full solution

Q. Simplify. Rationalize the denominator. \newline1025\frac{10}{2 - \sqrt{5}}
  1. Find Conjugate: Select the conjugate of 252 - \sqrt{5}. Conjugate of a number in the form aba - \sqrt{b} is a+ba + \sqrt{b}. So, the conjugate of 252 - \sqrt{5} is 2+52 + \sqrt{5}.
  2. Multiply by Conjugate: Multiply the original expression by the conjugate over itself to rationalize the denominator.\newlineThe expression is 1025\frac{10}{2 - \sqrt{5}}.\newlineWe multiply by 2+52+5\frac{2 + \sqrt{5}}{2 + \sqrt{5}} to rationalize the denominator.\newline1025×2+52+5\frac{10}{2 - \sqrt{5}} \times \frac{2 + \sqrt{5}}{2 + \sqrt{5}}
  3. Simplify Numerator: Simplify the numerator by distributing the 1010.10×(2+5)10 \times (2 + \sqrt{5})=10×2+10×5= 10 \times 2 + 10 \times \sqrt{5}=20+10×5= 20 + 10 \times \sqrt{5}
  4. Simplify Denominator: Simplify the denominator using the difference of squares formula.\newline(25)×(2+5)(2 - \sqrt{5}) \times (2 + \sqrt{5})\newline=22(5)2= 2^2 - (\sqrt{5})^2\newline=45= 4 - 5\newline=1= -1
  5. Combine Numerator and Denominator: Combine the simplified numerator and denominator.\newline(20+105)/(1)(20 + 10 \cdot \sqrt{5})/(-1)\newlineSince dividing by 1-1 just changes the sign, we get:\newline20105-20 - 10 \cdot \sqrt{5}

More problems from Simplify radical expressions using conjugates