Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Re-write the quadratic function below in Standard Form
\newline
y
=
8
(
x
−
3
)
2
+
1
y=8(x-3)^{2}+1
y
=
8
(
x
−
3
)
2
+
1
\newline
Answer:
y
=
y=
y
=
View step-by-step help
Home
Math Problems
Algebra 2
Quadratic equation with complex roots
Full solution
Q.
Re-write the quadratic function below in Standard Form
\newline
y
=
8
(
x
−
3
)
2
+
1
y=8(x-3)^{2}+1
y
=
8
(
x
−
3
)
2
+
1
\newline
Answer:
y
=
y=
y
=
Expand and Multiply:
To rewrite the quadratic function in standard form, we need to expand the squared term
(
x
−
3
)
2
(x-3)^2
(
x
−
3
)
2
and multiply it by
8
8
8
, then add
1
1
1
.
Expand
(
x
−
3
)
2
(x-3)^2
(
x
−
3
)
2
:
First, expand
(
x
−
3
)
2
(x-3)^2
(
x
−
3
)
2
to get
x
2
−
6
x
+
9
x^2 - 6x + 9
x
2
−
6
x
+
9
.
(
x
−
3
)
2
=
(
x
−
3
)
(
x
−
3
)
=
x
2
−
3
x
−
3
x
+
9
=
x
2
−
6
x
+
9
(x-3)^2 = (x-3)(x-3) = x^2 - 3x - 3x + 9 = x^2 - 6x + 9
(
x
−
3
)
2
=
(
x
−
3
)
(
x
−
3
)
=
x
2
−
3
x
−
3
x
+
9
=
x
2
−
6
x
+
9
Multiply by
8
8
8
:
Now, multiply the expanded form by
8
8
8
.
\newline
8
(
x
2
−
6
x
+
9
)
=
8
x
2
−
48
x
+
72
8(x^2 - 6x + 9) = 8x^2 - 48x + 72
8
(
x
2
−
6
x
+
9
)
=
8
x
2
−
48
x
+
72
Add
1
1
1
:
Finally, add
1
1
1
to the result of the multiplication.
\newline
y
=
8
x
2
−
48
x
+
72
+
1
y = 8x^2 - 48x + 72 + 1
y
=
8
x
2
−
48
x
+
72
+
1
Combine Like Terms:
Combine like terms to get the standard form of the quadratic function.
\newline
y
=
8
x
2
−
48
x
+
73
y = 8x^2 - 48x + 73
y
=
8
x
2
−
48
x
+
73
More problems from Quadratic equation with complex roots
Question
Simplify.
\newline
8
i
+
6
i
8i + 6i
8
i
+
6
i
\newline
\newline
Write your answer in the form
a
+
b
i
a + bi
a
+
bi
.
Get tutor help
Posted 10 months ago
Question
Find the complex conjugate of the given number.
\newline
4
+
10
i
4 + 10i
4
+
10
i
\newline
\newline
Write your answer in the form
a
+
b
i
a + bi
a
+
bi
.
Get tutor help
Posted 10 months ago
Question
Simplify.
\newline
−
4
i
−
9
i
\frac{{-4i}}{{-9i}}
−
9
i
−
4
i
\newline
\newline
Write your simplified answer in the form
a
+
b
i
a + bi
a
+
bi
.
Get tutor help
Posted 10 months ago
Question
Combine the like terms to create an equivalent expression.
\newline
7
k
−
k
+
19
=
0
7k-k+19=\boxed{\phantom{0}}
7
k
−
k
+
19
=
0
Get tutor help
Posted 1 year ago
Question
Apply the distributive property to factor out the greatest common factor.
\newline
9
+
12
n
=
9+12 n=
9
+
12
n
=
Get tutor help
Posted 10 months ago
Question
Solve the equation.
\newline
12
=
n
−
9
n
=
□
\begin{aligned} & 12=n-9 \\ n= & \square \end{aligned}
n
=
12
=
n
−
9
□
Get tutor help
Posted 1 year ago
Question
What is the amplitude of
y
=
−
sin
(
8
x
−
3
)
+
5
y=-\sin (8 x-3)+5
y
=
−
sin
(
8
x
−
3
)
+
5
?
\newline
units
Get tutor help
Posted 1 year ago
Question
What is the period of
\newline
y
=
4
sin
(
−
2
x
+
7
)
−
1
?
y=4 \sin (-2 x+7)-1 \text { ? }
y
=
4
sin
(
−
2
x
+
7
)
−
1
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 1 year ago
Question
3
⋅
(
3
+
20
i
)
=
3 \cdot(3+20 i)=
3
⋅
(
3
+
20
i
)
=
\newline
Your answer should be a complex number in the form
a
+
b
i
a+b i
a
+
bi
where
a
a
a
and
b
b
b
are real numbers.
Get tutor help
Posted 1 year ago
Question
(
35
−
23
i
)
+
(
13
+
25
i
)
=
(35-23 i)+(13+25 i)=
(
35
−
23
i
)
+
(
13
+
25
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant