Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Question
24 Calculate the derivative 
(dy)/(dx) for the following parametrically defined plane curve and locate any critical points on its graph.

x(t)=2sin(2t),quad y(t)=2cos(t),quad0 <= t <= 2pi.
Select the correct answer below:

(dy)/(dx)=-(sin(2t))/(cos(t)), critical points at 
(0,+-2),(+-2,+-sqrt2)

(dy)/(dx)=-(sin(t))/(cos(2t)), critical points at 
(0,+-sqrt2),(+-2,+-sqrt2)

(dy)/(dx)=-(sin(t))/(2cos(2t)), critical points at 
(0,+-2),(+-2,+-sqrt2)

(dy)/(dx)=-(sin(t))/(cos(t)), critical points at 
(0,+-2),(+-sqrt2,+-2)
FEEDBACK
MORE INSTRUCTION

Question\newline2424 Calculate the derivative dydx \frac{d y}{d x} for the following parametrically defined plane curve and locate any critical points on its graph.\newlinex(t)=2sin(2t),y(t)=2cos(t),0t2π. x(t)=2 \sin (2 t), \quad y(t)=2 \cos (t), \quad 0 \leq t \leq 2 \pi . \newlineSelect the correct answer below:\newlinedydx=sin(2t)cos(t) \frac{d y}{d x}=-\frac{\sin (2 t)}{\cos (t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)cos(2t) \frac{d y}{d x}=-\frac{\sin (t)}{\cos (2 t)} , critical points at (0,±2),(±2,±2) (0, \pm \sqrt{2}),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)2cos(2t) \frac{d y}{d x}=-\frac{\sin (t)}{2 \cos (2 t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)cos(t) \frac{d y}{d x}=-\frac{\sin (t)}{\cos (t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm \sqrt{2}, \pm 2) \newlineFEEDBACK\newlineMORE INSTRUCTION

Full solution

Q. Question\newline2424 Calculate the derivative dydx \frac{d y}{d x} for the following parametrically defined plane curve and locate any critical points on its graph.\newlinex(t)=2sin(2t),y(t)=2cos(t),0t2π. x(t)=2 \sin (2 t), \quad y(t)=2 \cos (t), \quad 0 \leq t \leq 2 \pi . \newlineSelect the correct answer below:\newlinedydx=sin(2t)cos(t) \frac{d y}{d x}=-\frac{\sin (2 t)}{\cos (t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)cos(2t) \frac{d y}{d x}=-\frac{\sin (t)}{\cos (2 t)} , critical points at (0,±2),(±2,±2) (0, \pm \sqrt{2}),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)2cos(2t) \frac{d y}{d x}=-\frac{\sin (t)}{2 \cos (2 t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm 2, \pm \sqrt{2}) \newlinedydx=sin(t)cos(t) \frac{d y}{d x}=-\frac{\sin (t)}{\cos (t)} , critical points at (0,±2),(±2,±2) (0, \pm 2),( \pm \sqrt{2}, \pm 2) \newlineFEEDBACK\newlineMORE INSTRUCTION
  1. Find Derivative: To find the derivative (dydx)(\frac{dy}{dx}) for the parametrically defined plane curve, we need to find the derivatives dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} first and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
  2. Find dxdt\frac{dx}{dt}: Let's find dxdt\frac{dx}{dt}. Given x(t)=2sin(2t)x(t) = 2\sin(2t), the derivative with respect to tt is dxdt=ddt[2sin(2t)]\frac{dx}{dt} = \frac{d}{dt} [2\sin(2t)]. Using the chain rule, we get dxdt=2cos(2t)2=4cos(2t)\frac{dx}{dt} = 2 \cdot \cos(2t) \cdot 2 = 4\cos(2t).
  3. Find dydt\frac{dy}{dt}: Now, let's find dydt\frac{dy}{dt}. Given y(t)=2cos(t)y(t) = 2\cos(t), the derivative with respect to tt is dydt=ddt[2cos(t)]\frac{dy}{dt} = \frac{d}{dt} [2\cos(t)]. Using the derivative of cosine, we get dydt=2sin(t)\frac{dy}{dt} = -2\sin(t).
  4. Calculate (dy)/(dx)(dy)/(dx): To find (dy)/(dx)(dy)/(dx), we divide dy/dtdy/dt by dx/dtdx/dt: (dy)/(dx)=(dy/dt)/(dx/dt)=(2sin(t))/(4cos(2t))(dy)/(dx) = (dy/dt) / (dx/dt) = (-2\sin(t)) / (4\cos(2t)). Simplifying this, we get (dy)/(dx)=(sin(t))/(2cos(2t))(dy)/(dx) = -(\sin(t)) / (2\cos(2t)).
  5. Identify Critical Points: Next, we need to find the critical points on the graph of the parametric curve. Critical points occur where the derivative (dydx)(\frac{dy}{dx}) is undefined or zero.
  6. Find t values: (dy)/(dx)(dy)/(dx) is undefined when the denominator is zero. So we need to find the values of tt where 2cos(2t)=02\cos(2t) = 0. This occurs when cos(2t)=0\cos(2t) = 0, which happens at t=π4,3π4,5π4,7π4t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} within the interval [0,2π][0, 2\pi].
  7. Locate Critical Points: (dydx)(\frac{dy}{dx}) is zero when the numerator is zero. So we need to find the values of tt where sin(t)=0\sin(t) = 0. This occurs when t=0t = 0, π\pi, 2π2\pi within the interval [0,2π][0, 2\pi].
  8. Summary of Critical Points: Now we need to find the corresponding xx and yy values for these tt values to locate the critical points.\newlineFor t=0,π,2πt = 0, \pi, 2\pi, x(t)=2sin(2t)=0x(t) = 2\sin(2t) = 0 and y(t)=2cos(t)=±2y(t) = 2\cos(t) = \pm2.\newlineFor t=π4,3π4,5π4,7π4t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, x(t)=2sin(2t)=±2x(t) = 2\sin(2t) = \pm2 and y(t)=2cos(t)=±2y(t) = 2\cos(t) = \pm\sqrt{2}.
  9. Summary of Critical Points: Now we need to find the corresponding xx and yy values for these tt values to locate the critical points.\newlineFor t=0,π,2πt = 0, \pi, 2\pi, x(t)=2sin(2t)=0x(t) = 2\sin(2t) = 0 and y(t)=2cos(t)=±2y(t) = 2\cos(t) = \pm2.\newlineFor t=π4,3π4,5π4,7π4t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, x(t)=2sin(2t)=±2x(t) = 2\sin(2t) = \pm2 and y(t)=2cos(t)=±2y(t) = 2\cos(t) = \pm\sqrt{2}.Therefore, the critical points on the graph are at (0,±2)(0, \pm2) and yy00.

More problems from Find derivatives of other trigonometric functions