Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Plot 
y=(sqrt(20+x)-5)/(x-5). Ohoose the correct graph beluk
A.
tion 5
Use rHospitar's Rule to find the limit. Select the correct choice
astion 6
A. 
lim_(x rarr5)(sqrt(20+x)-5)/(x-5)=◻ (Simplify your answer.)
B. The limit does not exist.
Question 9
Question 10
Question 11
. Help me solve this
View an example
Get more help -
https:/|tdx.acs.pearsonprd.tech/Player/Player.aspx?cultureld=&theme=math&style=highered&disab

Plot \newliney=20+x5x5y=\frac{\sqrt{20+x}-5}{x-5}. Choose the correct graph below\newlineA.\newlinetion 55\newlineUse L'Hospital's Rule to find the limit. Select the correct choice\newlinelimx520+x5x5=\lim_{x \to 5}\frac{\sqrt{20+x}-5}{x-5}=\square (Simplify your answer.)\newlineB. The limit does not exist.

Full solution

Q. Plot \newliney=20+x5x5y=\frac{\sqrt{20+x}-5}{x-5}. Choose the correct graph below\newlineA.\newlinetion 55\newlineUse L'Hospital's Rule to find the limit. Select the correct choice\newlinelimx520+x5x5=\lim_{x \to 5}\frac{\sqrt{20+x}-5}{x-5}=\square (Simplify your answer.)\newlineB. The limit does not exist.
  1. Plug in x=5x = 5: First, let's try to plug in x=5x = 5 directly into the equation and see what happens.\newliney=20+5555y = \frac{\sqrt{20+5}-5}{5-5}\newliney=2550y = \frac{\sqrt{25}-5}{0}\newliney=550y = \frac{5-5}{0}\newliney=00y = \frac{0}{0}\newlineWe get an indeterminate form 0/00/0, so we can't determine the limit this way.
  2. Apply L'Hôpital's Rule: Since we have an indeterminate form, let's apply L'Hôpital's Rule, which says we can take the derivative of the numerator and the denominator separately and then take the limit.\newlineFirst, find the derivative of the numerator, ddx[20+x]\frac{d}{dx}[\sqrt{20+x}].\newlineUsing the chain rule, the derivative of 20+x\sqrt{20+x} is 1220+x\frac{1}{2\sqrt{20+x}}.
  3. Find Derivatives: Now, find the derivative of the denominator, ddx[x5]\frac{d}{dx}[x-5].\newlineThe derivative of x5x-5 is simply 11.
  4. Take the Limit: Now we take the limit of the derivatives as xx approaches 55.
    limx5(1220+x)/(1)\lim_{x \to 5} \left(\frac{1}{2\sqrt{20+x}}\right) / (1)
    limx51220+x\lim_{x \to 5} \frac{1}{2\sqrt{20+x}}
    Now plug in x=5x = 5.
    limx51225\lim_{x \to 5} \frac{1}{2\sqrt{25}}
    limx5125\lim_{x \to 5} \frac{1}{2\cdot 5}
    limx5110\lim_{x \to 5} \frac{1}{10}
    So, the limit as xx approaches 55 is 5500.

More problems from One-step inequalities: word problems