Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Marks will be lost for resembling/copied work.
Put names of the group members on the cover page. Only the Group Leader to email a single copy of the work to linusaloo88@gmail.com.

ASSIGNMENT I
1a) Briefly discuss the Discrete Fourier Transform (DFT) and derive its pair back and forth defining equations.
b) Perform the circular and linear convolution of the following sequences using the DFT techniques.

{:[X_(1)(n)={1","3","1","4}],[X_(2)(n)={1","4","2","3}]:}

An analogue filter has the transfer function, given by:


T(s)=(12((s)+2))/((s+1)(s+2))
Convert this to its discrete equivalent by using the impulse-invariant transform. The sampling frequency is 
15Hz.
3. Given a second-order transfer function 
H(z)=(0.5(1-z^(-2)))/(1+1.3z^(-1)+0.3z^(-2)). Perform the filter realizations and write the difference equations using the cascade form via the firstorder sections.
4. Find the convolution of the following two sequences:

x(n)={[1,n=0","1","2],[0," otherwise "]" and "h(n)={[0,n=0],[1,n=1","2],[0," otherwise "]:}
i. Using the direct evaluation method
ii. Using tabular and graphical methods.
5 a) Describe the steps of designing digital filters.
b) Given the Fourier transform of sequences 
{x(n)} and 
{h(n)} are 
{x(e^(j omega))} and, 
{H(e^(j omega))} respectively, derive the Fourier transform of:
i. the delayed sequence 
{x_(k)(n)} in terms of 
{x(e^(j omega))}, where 
x_(k)(n)=x(n-k)
ii. the sequence 
{y(n)} in terms of 
X(e^(j omega)) and 
H(e^(j omega)) where 
y(n)=h(n)**x(n)
1
ASSIGNMENT II

A linear shift invariant system is described by the difference equation


y(n)-(3)/(4)y(n-1)+(1)/(8)y(n-2)=x(n)+x(n-1)
with 
y(-2)=0 and 
y(-1)=-1.
Find
i. the natural response of the system
ii. the forced response of the system for a step input and
iii. the frequency response of the system.
2. Compute the 
N-point DFT of 
x(n)=5delta(n).
3. Given a sequence 
x(n) for 
0 <= n <= 3, where 
x(0)=2,x(1)=3,x(2)=4, and 
x(3)=6, Evaluate its DFT X(k).
4. Find the digital network in direct and transposed form for the system described by the difference equation.

y(n)=2x(n)+0.3 x(n-1)+0.5 x(n-2)-0.7 y(n-1)-0.9 y(n-2)

Consider the sequence 
x[n]={3,1,-1,-2,0,4,2,1}. Calculate the Fast Fourier Transform (FFT).
END

33. Marks will be lost for resembling/copied work.\newline44. Put names of the group members on the cover page. Only the Group Leader to email a single copy of the work to linusaloo8888@gmail.com.\newlineASSIGNMENT I\newline11a) Briefly discuss the Discrete Fourier Transform (DFT) and derive its pair back and forth defining equations.\newlineb) Perform the circular and linear convolution of the following sequences using the DFT techniques.\newlineX1(n)={1,3,1,4}X2(n)={1,4,2,3} \begin{array}{l} X_{1}(n)=\{1,3,1,4\} \\ X_{2}(n)=\{1,4,2,3\} \\ \end{array} \newline22. An analogue filter has the transfer function, given by:\newlineT(s)=12( s+2)(s+1)(s+2) \mathrm{T}(\mathrm{s})=\frac{12(\mathrm{~s}+2)}{(\mathrm{s}+1)(\mathrm{s}+2)} \newlineConvert this to its discrete equivalent by using the impulse-invariant transform. The sampling frequency is 15 Hz 15 \mathrm{~Hz} .\newline33. Given a second-order transfer function H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} . Perform the filter realizations and write the difference equations using the cascade form via the firstorder sections.\newline44. Find the convolution of the following two sequences:\newlinex(n)={1n=0,1,20 otherwise  and h(n)={0n=01n=1,20 otherwise  x(n)=\left\{\begin{array}{ll} 1 & n=0,1,2 \\ 0 & \text { otherwise } \end{array} \text { and } h(n)=\left\{\begin{array}{ll} 0 & n=0 \\ 1 & n=1,2 \\ 0 & \text { otherwise } \end{array}\right.\right. \newlinei. Using the direct evaluation method\newlineii. Using tabular and graphical methods.\newline55 a) Describe the steps of designing digital filters.\newlineb) Given the Fourier transform of sequences {x(n)} \{x(n)\} and {h(n)} \{h(n)\} are {x(ejω)} \left\{x\left(e^{j \omega}\right)\right\} and, {H(ejω)} \left\{H\left(e^{j \omega}\right)\right\} respectively, derive the Fourier transform of:\newlinei. the delayed sequence {xk(n)} \left\{x_{k}(n)\right\} in terms of {x(ejω)} \left\{x\left(e^{j \omega}\right)\right\} , where xk(n)=x(nk) x_{k}(n)=x(n-k) \newlineii. the sequence {y(n)} \{y(n)\} in terms of H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 00 and H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 11 where H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 22\newline11\newlineASSIGNMENT II\newline11. A linear shift invariant system is described by the difference equation\newliney(n)34y(n1)+18y(n2)=x(n)+x(n1) y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)+x(n-1) \newlinewith H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 33 and H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 44.\newlineFind\newlinei. the natural response of the system\newlineii. the forced response of the system for a step input and\newlineiii. the frequency response of the system.\newline22. Compute the H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 55-point DFT of H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 66.\newline33. Given a sequence H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 77 for H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 88, where H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 99, and {x(n)} \{x(n)\} 00, Evaluate its DFT X(k).\newline44. Find the digital network in direct and transposed form for the system described by the difference equation.\newliney(n)=2x(n)+0.3x(n1)+0.5x(n2)0.7y(n1)0.9y(n2) y(n)=2 x(n)+0.3 x(n-1)+0.5 x(n-2)-0.7 y(n-1)-0.9 y(n-2) \newline55. Consider the sequence {x(n)} \{x(n)\} 11. Calculate the Fast Fourier Transform (FFT).\newlineEND

Full solution

Q. 33. Marks will be lost for resembling/copied work.\newline44. Put names of the group members on the cover page. Only the Group Leader to email a single copy of the work to linusaloo8888@gmail.com.\newlineASSIGNMENT I\newline11a) Briefly discuss the Discrete Fourier Transform (DFT) and derive its pair back and forth defining equations.\newlineb) Perform the circular and linear convolution of the following sequences using the DFT techniques.\newlineX1(n)={1,3,1,4}X2(n)={1,4,2,3} \begin{array}{l} X_{1}(n)=\{1,3,1,4\} \\ X_{2}(n)=\{1,4,2,3\} \\ \end{array} \newline22. An analogue filter has the transfer function, given by:\newlineT(s)=12( s+2)(s+1)(s+2) \mathrm{T}(\mathrm{s})=\frac{12(\mathrm{~s}+2)}{(\mathrm{s}+1)(\mathrm{s}+2)} \newlineConvert this to its discrete equivalent by using the impulse-invariant transform. The sampling frequency is 15 Hz 15 \mathrm{~Hz} .\newline33. Given a second-order transfer function H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} . Perform the filter realizations and write the difference equations using the cascade form via the firstorder sections.\newline44. Find the convolution of the following two sequences:\newlinex(n)={1n=0,1,20 otherwise  and h(n)={0n=01n=1,20 otherwise  x(n)=\left\{\begin{array}{ll} 1 & n=0,1,2 \\ 0 & \text { otherwise } \end{array} \text { and } h(n)=\left\{\begin{array}{ll} 0 & n=0 \\ 1 & n=1,2 \\ 0 & \text { otherwise } \end{array}\right.\right. \newlinei. Using the direct evaluation method\newlineii. Using tabular and graphical methods.\newline55 a) Describe the steps of designing digital filters.\newlineb) Given the Fourier transform of sequences {x(n)} \{x(n)\} and {h(n)} \{h(n)\} are {x(ejω)} \left\{x\left(e^{j \omega}\right)\right\} and, {H(ejω)} \left\{H\left(e^{j \omega}\right)\right\} respectively, derive the Fourier transform of:\newlinei. the delayed sequence {xk(n)} \left\{x_{k}(n)\right\} in terms of {x(ejω)} \left\{x\left(e^{j \omega}\right)\right\} , where xk(n)=x(nk) x_{k}(n)=x(n-k) \newlineii. the sequence {y(n)} \{y(n)\} in terms of H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 00 and H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 11 where H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 22\newline11\newlineASSIGNMENT II\newline11. A linear shift invariant system is described by the difference equation\newliney(n)34y(n1)+18y(n2)=x(n)+x(n1) y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)+x(n-1) \newlinewith H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 33 and H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 44.\newlineFind\newlinei. the natural response of the system\newlineii. the forced response of the system for a step input and\newlineiii. the frequency response of the system.\newline22. Compute the H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 55-point DFT of H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 66.\newline33. Given a sequence H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 77 for H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 88, where H(z)=0.5(1z2)1+1.3z1+0.3z2 H(z)=\frac{0.5\left(1-z^{-2}\right)}{1+1.3 z^{-1}+0.3 z^{-2}} 99, and {x(n)} \{x(n)\} 00, Evaluate its DFT X(k).\newline44. Find the digital network in direct and transposed form for the system described by the difference equation.\newliney(n)=2x(n)+0.3x(n1)+0.5x(n2)0.7y(n1)0.9y(n2) y(n)=2 x(n)+0.3 x(n-1)+0.5 x(n-2)-0.7 y(n-1)-0.9 y(n-2) \newline55. Consider the sequence {x(n)} \{x(n)\} 11. Calculate the Fast Fourier Transform (FFT).\newlineEND
  1. Simplify inequality: Simplify the inequality. b2b \geq 2

More problems from One-step inequalities: word problems