Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_((x,y)rarr(0,0))(y^(2)sen^(2)x)/(x^(4)+y^(4))

1111. lim(x,y)(0,0)y2sen2xx4+y4 \lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \operatorname{sen}^{2} x}{x^{4}+y^{4}}

Full solution

Q. 1111. lim(x,y)(0,0)y2sen2xx4+y4 \lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \operatorname{sen}^{2} x}{x^{4}+y^{4}}
  1. Analyze Behavior: Step 11: Analyze the behavior of the numerator and denominator near the point (0,0)(0,0).\newlineNumerator: y2sin2(x)y^2 \sin^2(x) approaches 00 as both yy and xx approach 00.\newlineDenominator: x4+y4x^4 + y^4 also approaches 00 as xx and yy approach 00.
  2. Apply Limit: Step 22: Apply the limit to the function.\newlinelim(x,y)(0,0)y2sin2(x)x4+y4\lim_{(x,y)\rightarrow(0,0)} \frac{y^2 \sin^2(x)}{x^4 + y^4}.\newlineSince both the numerator and denominator approach 00, we consider the rate at which they approach 00.
  3. Use Polar Coordinates: Step 33: Use polar coordinates to simplify the limit. Let x=rcos(θ)x = r\cos(\theta) and y=rsin(θ)y = r\sin(\theta), where rr is the radius and θ\theta is the angle. Then, x4+y4=r4cos4(θ)+r4sin4(θ)=r4(cos4(θ)+sin4(θ))x^4 + y^4 = r^4\cos^4(\theta) + r^4\sin^4(\theta) = r^4(\cos^4(\theta) + \sin^4(\theta)). sin2(x)=sin2(rcos(θ))\sin^2(x) = \sin^2(r\cos(\theta)).
  4. Substitute and Simplify: Step 44: Substitute polar coordinates into the limit. \newlinelimr0(r2sin2(θ)sin2(rcos(θ))r4(cos4(θ)+sin4(θ)))\lim_{r\to 0} \left(\frac{r^2\sin^2(\theta) \cdot \sin^2(r\cos(\theta))}{r^4(\cos^4(\theta) + \sin^4(\theta))}\right). \newlineThis simplifies to sin2(θ)sin2(rcos(θ))r2(cos4(θ)+sin4(θ))\frac{\sin^2(\theta) \cdot \sin^2(r\cos(\theta))}{r^2(\cos^4(\theta) + \sin^4(\theta))}.
  5. Evaluate Limit: Step 55: Evaluate the simplified limit.\newlineAs rr approaches 00, sin2(rcos(θ))\sin^2(r\cos(\theta)) approaches 00 faster than r2r^2, making the whole expression approach 00.

More problems from Find derivatives of using multiple formulae