Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lg x+54log_(x)10=15

lgx+54logx10=15 \lg x+54 \log _{x} 10=15

Full solution

Q. lgx+54logx10=15 \lg x+54 \log _{x} 10=15
  1. Understand Given Equation: First, let's understand the given equation lgx+54logx10=15\lg x + 54 \cdot \log_{x}10 = 15. Here, lgx\lg x is the logarithm of xx to the base 1010, which is the same as log10x\log_{10}x. Also, logx10\log_{x}10 is the logarithm of 1010 to the base xx. We need to solve for xx.
  2. Change of Base Formula: We can use the change of base formula for logarithms, which states that logab=logcblogca\log_{a}b = \frac{\log_{c}b}{\log_{c}a}, to convert logx10\log_{x}10 into a logarithm with base 1010. This gives us log1010log10x.\frac{\log_{10}10}{\log_{10}x}.
  3. Simplify Logarithmic Expressions: Since log1010\log_{10}10 is equal to 11 (because any log of a number to the same base is 11), we can simplify the expression to 1/log10x1 / \log_{10}x, which is also equal to 1/lgx1 / \lg x.
  4. Rewrite and Simplify Equation: Now we can rewrite the original equation using this simplification: lgx+54×(1lgx)=15\lg x + 54 \times \left(\frac{1}{\lg x}\right) = 15.
  5. Convert to Quadratic Equation: To solve this equation, we can multiply through by lgx\lg x to get rid of the fraction: (lgx)2+54=15×lgx(\lg x)^2 + 54 = 15 \times \lg x.
  6. Apply Quadratic Formula: Rearrange the equation to set it to zero: (lgx)215lgx+54=0(\lg x)^2 - 15 \cdot \lg x + 54 = 0.
  7. Calculate Discriminant: This is a quadratic equation in terms of lgx\lg x. We can solve for lgx\lg x using the quadratic formula, where a=1a = 1, b=15b = -15, and c=54c = 54.
  8. Solve for lgx\lg x: The quadratic formula is given by lgx=b±b24ac2a\lg x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Plugging in the values, we get lgx=15±152415421\lg x = \frac{15 \pm \sqrt{15^2 - 4\cdot 1\cdot 54}}{2\cdot 1}.
  9. Simplify Solutions: Calculate the discriminant: 1524154=225216=915^2 - 4\cdot1\cdot54 = 225 - 216 = 9.
  10. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 2. This gives us two solutions: lgx=(15+3)/2\lg x = (15 + 3) / 2 or lgx=(153)/2\lg x = (15 - 3) / 2.
  11. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 2. This gives us two solutions: lgx=(15+3)/2\lg x = (15 + 3) / 2 or lgx=(153)/2\lg x = (15 - 3) / 2.Simplify both solutions: lgx=18/2\lg x = 18 / 2 or lgx=12/2\lg x = 12 / 2, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6.
  12. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 2. This gives us two solutions: lgx=(15+3)/2\lg x = (15 + 3) / 2 or lgx=(153)/2\lg x = (15 - 3) / 2.Simplify both solutions: lgx=18/2\lg x = 18 / 2 or lgx=12/2\lg x = 12 / 2, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6.Convert the logarithmic form to exponential form to solve for x: 10lgx=x10^{\lg x} = x. This gives us x=109x = 10^9 or lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200.
  13. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}. This gives us two solutions: lgx=15+32\lg x = \frac{15 + 3}{2} or lgx=1532\lg x = \frac{15 - 3}{2}.Simplify both solutions: lgx=182\lg x = \frac{18}{2} or lgx=122\lg x = \frac{12}{2}, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6.Convert the logarithmic form to exponential form to solve for x: 10lgx=x10^{\lg x} = x. This gives us x=109x = 10^9 or lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}00.We have found two potential solutions for x, but we need to check if both are valid in the original equation. Let's check x=109x = 10^9 and lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}00 in the equation lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}33.
  14. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}. This gives us two solutions: lgx=15+32\lg x = \frac{15 + 3}{2} or lgx=1532\lg x = \frac{15 - 3}{2}.Simplify both solutions: lgx=182\lg x = \frac{18}{2} or lgx=122\lg x = \frac{12}{2}, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6.Convert the logarithmic form to exponential form to solve for xx: 10lgx=x10^{\lg x} = x. This gives us lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}00 or lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}11.We have found two potential solutions for xx, but we need to check if both are valid in the original equation. Let's check lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}00 and lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}11 in the equation lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}55.First, check lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}00: lgx=15±92\lg x = \frac{15 \pm \sqrt{9}}{2}77. This solution is valid.
  15. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 2. This gives us two solutions: lgx=(15+3)/2\lg x = (15 + 3) / 2 or lgx=(153)/2\lg x = (15 - 3) / 2. Simplify both solutions: lgx=18/2\lg x = 18 / 2 or lgx=12/2\lg x = 12 / 2, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6. Convert the logarithmic form to exponential form to solve for xx: 10lgx=x10^{\lg x} = x. This gives us lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200 or lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 211. We have found two potential solutions for xx, but we need to check if both are valid in the original equation. Let's check lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200 and lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 211 in the equation lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 255. First, check lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 277. This solution is valid. Now, check lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 211: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 299. This solution is also valid.
  16. Check Validity of Solutions: Now, calculate the two possible solutions for lgx\lg x: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 2. This gives us two solutions: lgx=(15+3)/2\lg x = (15 + 3) / 2 or lgx=(153)/2\lg x = (15 - 3) / 2.Simplify both solutions: lgx=18/2\lg x = 18 / 2 or lgx=12/2\lg x = 12 / 2, which gives us lgx=9\lg x = 9 or lgx=6\lg x = 6.Convert the logarithmic form to exponential form to solve for x: 10lgx=x10^{\lg x} = x. This gives us x=109x = 10^9 or lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200.We have found two potential solutions for x, but we need to check if both are valid in the original equation. Let's check x=109x = 10^9 and lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200 in the equation lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 233.First, check x=109x = 10^9: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 255. This solution is valid.Now, check lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200: lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 277. This solution is also valid.Both x=109x = 10^9 and lgx=(15±9)/2\lg x = (15 \pm \sqrt{9}) / 200 satisfy the original equation, so there are two valid solutions for x.

More problems from Find derivatives of logarithmic functions