Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let (X,d) (X,d) be a metric space. Take R \mathbb{R} with its Euclidean metric, e e , and X×X X \times X with one of the canonical metrics on the Cartesian product. Prove that q:X×XR+,(u,v)d(u,v) q : X \times X \rightarrow \mathbb{R}^+ , (u,v) \mapsto d(u, v) is continuous. Given metric spaces, (X,d) (X,d) and (X0,d0) (X_0,d_0), the function f:XY f : X\rightarrow Y is uniformly continuous if and only if given any ε>0 \varepsilon > 0 there is a δ>0 \delta > 0 with R \mathbb{R} 00 whenever \( d(u,v)

Full solution

Q. Let (X,d) (X,d) be a metric space. Take R \mathbb{R} with its Euclidean metric, e e , and X×X X \times X with one of the canonical metrics on the Cartesian product. Prove that q:X×XR+,(u,v)d(u,v) q : X \times X \rightarrow \mathbb{R}^+ , (u,v) \mapsto d(u, v) is continuous. Given metric spaces, (X,d) (X,d) and (X0,d0) (X_0,d_0), the function f:XY f : X\rightarrow Y is uniformly continuous if and only if given any ε>0 \varepsilon > 0 there is a δ>0 \delta > 0 with R \mathbb{R} 00 whenever \( d(u,v)
  1. Define ϵ\epsilon and δ\delta: We need to show that for any ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that for all (u,v),(u,v)(u,v), (u',v') in X×XX \times X, if the distance between (u,v)(u,v) and (u,v)(u',v') is less than δ\delta, then the absolute difference between d(u,v)d(u, v) and δ\delta00 is less than ϵ\epsilon.
  2. Apply triangle inequality: Let's choose ε>0\varepsilon > 0. We want to find δ>0\delta > 0 such that if dX×X((u,v),(u,v))<δd_{X\times X}((u,v), (u',v')) < \delta, then d(u,v)d(u,v)<ε|d(u, v) - d(u', v')| < \varepsilon, where dX×Xd_{X\times X} is the metric on X×XX \times X.
  3. Use max metric: We can use the triangle inequality property of the metric dd on XX, which states that for any x,y,zx, y, z in XX, d(x,z)d(x,y)+d(y,z)d(x, z) \leq d(x, y) + d(y, z).
  4. Choose δ=ϵ2\delta = \frac{\epsilon}{2}: Applying the triangle inequality twice, we get d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v) and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u', v') \leq d(u', u) + d(u, v) + d(v, v').
  5. Choose δ=ϵ2\delta = \frac{\epsilon}{2}: Applying the triangle inequality twice, we get d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v) and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u', v') \leq d(u', u) + d(u, v) + d(v, v'). Subtracting the second inequality from the first, we obtain d(u,v)d(u,v)d(u,u)+d(v,v)|d(u, v) - d(u', v')| \leq d(u, u') + d(v, v').
  6. Choose δ=ϵ2\delta = \frac{\epsilon}{2}: Applying the triangle inequality twice, we get d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v) and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u', v') \leq d(u', u) + d(u, v) + d(v, v'). Subtracting the second inequality from the first, we obtain |d(u, v) - d(u', v')| \leq d(u, u') + d(v, v')\. Now, we need to relate \$d(u, u') and d(v,v)d(v, v') to the metric dX×Xd_{X\times X} on X×XX \times X. If we choose the metric dX×Xd_{X\times X} to be the max metric, for example, then dX×X((u,v),(u,v))=max{d(u,u),d(v,v)}d_{X\times X}((u,v), (u',v')) = \max\{d(u, u'), d(v, v')\}.
  7. Choose δ=ϵ2\delta = \frac{\epsilon}{2}: Applying the triangle inequality twice, we get d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v) and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u', v') \leq d(u', u) + d(u, v) + d(v, v'). Subtracting the second inequality from the first, we obtain |d(u, v) - d(u', v')| \leq d(u, u') + d(v, v')\. Now, we need to relate \$d(u, u') and d(v,v)d(v, v') to the metric dX×Xd_{X\times X} on X×XX \times X. If we choose the metric dX×Xd_{X\times X} to be the max metric, for example, then dX×X((u,v),(u,v))=max{d(u,u),d(v,v)}d_{X\times X}((u,v), (u',v')) = \max\{d(u, u'), d(v, v')\}. If dX×X((u,v),(u,v))<δd_{X\times X}((u,v), (u',v')) < \delta, then both d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)00 and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)11. We can choose δ=ϵ2\delta = \frac{\epsilon}{2} to ensure that d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)33.
  8. Choose δ=ϵ2\delta = \frac{\epsilon}{2}: Applying the triangle inequality twice, we get d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v) and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u', v') \leq d(u', u) + d(u, v) + d(v, v'). Subtracting the second inequality from the first, we obtain d(u,v)d(u,v)d(u,u)+d(v,v)|d(u, v) - d(u', v')| \leq d(u, u') + d(v, v'). Now, we need to relate d(u,u)d(u, u') and d(v,v)d(v, v') to the metric dX×Xd_{X\times X} on X×XX \times X. If we choose the metric dX×Xd_{X\times X} to be the max metric, for example, then dX×X((u,v),(u,v))=max{d(u,u),d(v,v)}d_{X\times X}((u,v), (u',v')) = \max\{d(u, u'), d(v, v')\}. If d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)00, then both d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)11 and d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)22. We can choose δ=ϵ2\delta = \frac{\epsilon}{2} to ensure that d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)44. Therefore, for any d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)55, we can find a d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)66 (specifically δ=ϵ2\delta = \frac{\epsilon}{2}) such that if d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)00, then d(u,v)d(u,u)+d(u,v)+d(v,v)d(u, v) \leq d(u, u') + d(u', v') + d(v', v)99, which proves that q is continuous.

More problems from Dilations of functions