Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=-(x)/(3sin(x-2)).
Select the correct description of the one-sided limits of 
g at 
x=2.
Choose 1 answer:
(A)

{:[lim_(x rarr2^(+))g(x)=+oo" and "],[lim_(x rarr2^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr2^(+))g(x)=+oo" and "],[lim_(x rarr2^(-))g(x)=-oo]:}
(c)

{:[lim_(x rarr2^(+))g(x)=-oo" and "],[lim_(x rarr2^(-))g(x)=+oo]:}
(D)

{:[lim_(x rarr2^(+))g(x)=-oo" and "],[lim_(x rarr2^(-))g(x)=-oo]:}

Let g(x)=x3sin(x2) g(x)=-\frac{x}{3 \sin (x-2)} .\newlineSelect the correct description of the one-sided limits of g g at x=2 x=2 .\newlineChoose 11 answer:\newline(A)\newlinelimx2+g(x)=+ and limx2g(x)=+ \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx2+g(x)=+ and limx2g(x)= \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=-\infty \end{array} \newline(c)\newlinelimx2+g(x)= and limx2g(x)=+ \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx2+g(x)= and limx2g(x)= \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=x3sin(x2) g(x)=-\frac{x}{3 \sin (x-2)} .\newlineSelect the correct description of the one-sided limits of g g at x=2 x=2 .\newlineChoose 11 answer:\newline(A)\newlinelimx2+g(x)=+ and limx2g(x)=+ \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx2+g(x)=+ and limx2g(x)= \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=-\infty \end{array} \newline(c)\newlinelimx2+g(x)= and limx2g(x)=+ \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx2+g(x)= and limx2g(x)= \begin{array}{l} \lim _{x \rightarrow 2^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 2^{-}} g(x)=-\infty \end{array}
  1. Analyze Function Near x=2x=2: Analyze the function g(x)g(x) near x=2x=2. We have the function g(x)=x3sin(x2)g(x) = -\frac{x}{3\sin(x-2)}. To find the one-sided limits as xx approaches 22, we need to consider the behavior of the sine function near x=2x=2.
  2. Limit from the Right: Consider the limit from the right, limx2+g(x)\lim_{x \to 2^+} g(x). As xx approaches 22 from the right, (x2)(x-2) approaches 00 from the right, and sin(x2)\sin(x-2) approaches sin(0)\sin(0) from the right, which is 00. Since the sine function is continuous and smooth, just to the right of 00, the sine is positive. Therefore, sin(x2)\sin(x-2) will be a small positive number, making xx00 a small positive number. The numerator xx11 will be a small negative number since xx is just slightly larger than 22. Dividing a small negative number by a small positive number yields a large negative number. Hence, xx44.
  3. Limit from the Left: Consider the limit from the left, limx2g(x)\lim_{x \to 2^-} g(x). As xx approaches 22 from the left, (x2)(x-2) approaches 00 from the left, and sin(x2)\sin(x-2) approaches sin(0)\sin(0) from the left, which is 00. Since the sine function is continuous and smooth, just to the left of 00, the sine is negative. Therefore, sin(x2)\sin(x-2) will be a small negative number, making xx00 a small negative number. The numerator xx11 will be a small negative number since xx is just slightly less than 22. Dividing a small negative number by another small negative number yields a large positive number. Hence, xx44.

More problems from Compare linear, exponential, and quadratic growth