Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)={[(x^(2)+5x+6)/(x+3)," for "x!=-3],[k," for "x=-3]:}

g is continuous for all real numbers.
What is the value of 
k ?
Choose 1 answer:
(A) -2
(B) -3
(C) -6
(D) -1

Let g(x)={x2+5x+6x+3 for x3k for x=3 g(x)=\left\{\begin{array}{ll}\frac{x^{2}+5 x+6}{x+3} & \text { for } x \neq-3 \\ k & \text { for } x=-3\end{array}\right. \newlineg g is continuous for all real numbers.\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 3-3\newline(C) 6-6\newline(D) 1-1

Full solution

Q. Let g(x)={x2+5x+6x+3 for x3k for x=3 g(x)=\left\{\begin{array}{ll}\frac{x^{2}+5 x+6}{x+3} & \text { for } x \neq-3 \\ k & \text { for } x=-3\end{array}\right. \newlineg g is continuous for all real numbers.\newlineWhat is the value of k k ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 3-3\newline(C) 6-6\newline(D) 1-1
  1. Simplifying g(x)g(x): To ensure that g(x)g(x) is continuous at x=3x = -3, the limit of g(x)g(x) as xx approaches 3-3 from the left must equal the value of g(x)g(x) at x=3x = -3. Let's first simplify the expression for g(x)g(x) when xx is not equal to 3-3.\newlineWe have:\newlineg(x)g(x)11\newlineThis can be factored as:\newlineg(x)g(x)22\newlineFor g(x)g(x)33, we can cancel out the g(x)g(x)44 terms:\newlineg(x)g(x)55
  2. Finding the limit of g(x)g(x): Now, we need to find the limit of g(x)g(x) as xx approaches 3-3. Since we have simplified g(x)g(x) to x+2x + 2 for x3x \neq -3, we can directly substitute x=3x = -3 into this simplified expression to find the limit.\newlineLimit as xx approaches 3-3 of g(x)g(x) is:\newlineg(x)g(x)11
  3. Determining the value of kk: For g(x)g(x) to be continuous at x=3x = -3, the value of kk must be equal to the limit of g(x)g(x) as xx approaches 3-3.\newlineTherefore, k=1k = -1.

More problems from Conjugate root theorems