Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(sin(x))/(sqrtx).

g^(')(x)=

Let g(x)=sin(x)x g(x)=\frac{\sin (x)}{\sqrt{x}} .\newlineg(x)= g^{\prime}(x)=

Full solution

Q. Let g(x)=sin(x)x g(x)=\frac{\sin (x)}{\sqrt{x}} .\newlineg(x)= g^{\prime}(x)=
  1. Use Quotient Rule: To find the derivative of the function g(x)=sin(x)xg(x) = \frac{\sin(x)}{\sqrt{x}}, we will use the quotient rule. The quotient rule states that if you have a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}. Here, f(x)=sin(x)f(x) = \sin(x) and g(x)=xg(x) = \sqrt{x}.
  2. Find f(x)f'(x): First, we need to find the derivative of f(x)=sin(x)f(x) = \sin(x). The derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x). So, f(x)=cos(x)f'(x) = \cos(x).
  3. Find g(x)g'(x): Next, we need to find the derivative of g(x)=xg(x) = \sqrt{x}. The derivative of x\sqrt{x} with respect to xx is 12x\frac{1}{2\sqrt{x}}. So, g(x)=12xg'(x) = \frac{1}{2\sqrt{x}}.
  4. Apply Quotient Rule: Now we apply the quotient rule. We have f(x)=cos(x)f'(x) = \cos(x) and g(x)=12xg'(x) = \frac{1}{2\sqrt{x}}. Plugging these into the quotient rule formula, we get:\newlineg(x)=cos(x)xsin(x)(12x)(x)2.g'(x) = \frac{\cos(x) \cdot \sqrt{x} - \sin(x) \cdot \left(\frac{1}{2\sqrt{x}}\right)}{(\sqrt{x})^2}.
  5. Simplify Expression: Simplify the expression by multiplying through by x\sqrt{x} and combining terms:\newlineg(x)=cos(x)xxsin(x)(12)xg'(x) = \frac{\cos(x) \cdot \sqrt{x} \cdot \sqrt{x} - \sin(x) \cdot (\frac{1}{2})}{x}.\newlineThis simplifies to:\newlineg(x)=cos(x)xsin(x)2xg'(x) = \frac{\cos(x) \cdot x - \frac{\sin(x)}{2}}{x}.
  6. Final Derivative: Finally, we can simplify the expression further by dividing each term by xx:g(x)=cos(x)(sin(x)2x).g'(x) = \cos(x) - \left(\frac{\sin(x)}{2x}\right).This is the derivative of g(x)g(x).