Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=-2x^(3)+3x^(2)+36 x.
The absolute maximum value of 
g over the closed interval 
[-3,5] occurs at what 
x-value?
Choose 1 answer:
(A) 5
(B) 3
(C) -3
(D) 2

Let g(x)=2x3+3x2+36x g(x)=-2 x^{3}+3 x^{2}+36 x .\newlineThe absolute maximum value of g g over the closed interval [3,5] [-3,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 55\newline(B) 33\newline(C) 3-3\newline(D) 22

Full solution

Q. Let g(x)=2x3+3x2+36x g(x)=-2 x^{3}+3 x^{2}+36 x .\newlineThe absolute maximum value of g g over the closed interval [3,5] [-3,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 55\newline(B) 33\newline(C) 3-3\newline(D) 22
  1. Find Derivative of g(x)g(x): To find the absolute maximum value of the function g(x)g(x) on the closed interval [3,5][-3,5], we need to find the critical points of g(x)g(x) within the interval and evaluate g(x)g(x) at the endpoints of the interval.
  2. Locate Critical Points: First, we find the derivative of g(x)g(x) to locate the critical points. The derivative g(x)g'(x) is given by:\newlineg(x)=ddx(2x3+3x2+36x)=6x2+6x+36g'(x) = \frac{d}{dx} (-2x^3 + 3x^2 + 36x) = -6x^2 + 6x + 36.
  3. Evaluate Critical Points: Next, we find the critical points by setting g(x)g'(x) to zero and solving for xx: 6x2+6x+36=0-6x^2 + 6x + 36 = 0.
  4. Compare Values: We can factor out a 6-6 from the equation to simplify it: 6(x2x6)=0-6(x^2 - x - 6) = 0.
  5. Find Absolute Maximum: Now we factor the quadratic equation:\newlinex2x6=(x3)(x+2)=0x^2 - x - 6 = (x - 3)(x + 2) = 0.
  6. Find Absolute Maximum: Now we factor the quadratic equation: x2x6=(x3)(x+2)=0x^2 - x - 6 = (x - 3)(x + 2) = 0. The solutions to the equation are x=3x = 3 and x=2x = -2. These are the critical points where the function g(x)g(x) could have a local maximum or minimum.
  7. Find Absolute Maximum: Now we factor the quadratic equation:\newlinex2x6=(x3)(x+2)=0x^2 - x - 6 = (x - 3)(x + 2) = 0.The solutions to the equation are x=3x = 3 and x=2x = -2. These are the critical points where the function g(x)g(x) could have a local maximum or minimum.We now evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:\newlineg(3)=2(3)3+3(3)2+36(3)=54+27108=135g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -54 + 27 - 108 = -135.\newlineg(2)=2(2)3+3(2)2+36(2)=16+1272=44g(-2) = -2(-2)^3 + 3(-2)^2 + 36(-2) = 16 + 12 - 72 = -44.\newlineg(3)=2(3)3+3(3)2+36(3)=54+27+108=81g(3) = -2(3)^3 + 3(3)^2 + 36(3) = -54 + 27 + 108 = 81.\newlineg(5)=2(5)3+3(5)2+36(5)=250+75+180=5g(5) = -2(5)^3 + 3(5)^2 + 36(5) = -250 + 75 + 180 = 5.
  8. Find Absolute Maximum: Now we factor the quadratic equation: \newlinex2x6=(x3)(x+2)=0x^2 - x - 6 = (x - 3)(x + 2) = 0.The solutions to the equation are x=3x = 3 and x=2x = -2. These are the critical points where the function g(x)g(x) could have a local maximum or minimum.We now evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:\newlineg(3)=2(3)3+3(3)2+36(3)=54+27108=135g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -54 + 27 - 108 = -135.\newlineg(2)=2(2)3+3(2)2+36(2)=16+1272=44g(-2) = -2(-2)^3 + 3(-2)^2 + 36(-2) = 16 + 12 - 72 = -44.\newlineg(3)=2(3)3+3(3)2+36(3)=54+27+108=81g(3) = -2(3)^3 + 3(3)^2 + 36(3) = -54 + 27 + 108 = 81.\newlineg(5)=2(5)3+3(5)2+36(5)=250+75+180=5g(5) = -2(5)^3 + 3(5)^2 + 36(5) = -250 + 75 + 180 = 5.Comparing the values of g(x)g(x) at the critical points and endpoints, we find that the maximum value occurs at x=3x = 3, which is x=3x = 322.
  9. Find Absolute Maximum: Now we factor the quadratic equation: \newlinex2x6=(x3)(x+2)=0x^2 - x - 6 = (x - 3)(x + 2) = 0. The solutions to the equation are x=3x = 3 and x=2x = -2. These are the critical points where the function g(x)g(x) could have a local maximum or minimum. We now evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]: \newlineg(3)=2(3)3+3(3)2+36(3)=54+27108=135g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -54 + 27 - 108 = -135. \newlineg(2)=2(2)3+3(2)2+36(2)=16+1272=44g(-2) = -2(-2)^3 + 3(-2)^2 + 36(-2) = 16 + 12 - 72 = -44. \newlineg(3)=2(3)3+3(3)2+36(3)=54+27+108=81g(3) = -2(3)^3 + 3(3)^2 + 36(3) = -54 + 27 + 108 = 81. \newlineg(5)=2(5)3+3(5)2+36(5)=250+75+180=5g(5) = -2(5)^3 + 3(5)^2 + 36(5) = -250 + 75 + 180 = 5. Comparing the values of g(x)g(x) at the critical points and endpoints, we find that the maximum value occurs at x=3x = 3, which is 8181. Therefore, the absolute maximum value of g(x)g(x) over the interval [3,5][-3,5] occurs at x=3x = 3.

More problems from Euler's method