Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(2)/(x+3).
Select the correct description of the one-sided limits of 
g at 
x=-3.
Choose 1 answer:
(A)

{:[lim_(x rarr-3^(+))g(x)=+oo" and "],[lim_(x rarr-3^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr-3^(+))g(x)=+oo" and "],[lim_(x rarr-3^(-))g(x)=-oo]:}
(c)

{:[lim_(x rarr-3^(+))g(x)=-oo" and "],[lim_(x rarr-3^(-))g(x)=+oo]:}
(D)

{:[lim_(x rarr-3^(+))g(x)=-oo" and "],[lim_(x rarr-3^(-))g(x)=-oo]:}

Let g(x)=2x+3 g(x)=\frac{2}{x+3} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=-3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=2x+3 g(x)=\frac{2}{x+3} .\newlineSelect the correct description of the one-sided limits of g g at x=3 x=-3 .\newlineChoose 11 answer:\newline(A)\newlinelimx3+g(x)=+ and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx3+g(x)=+ and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array} \newline(C)\newlinelimx3+g(x)= and limx3g(x)=+ \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx3+g(x)= and limx3g(x)= \begin{array}{l} \lim _{x \rightarrow-3^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow-3^{-}} g(x)=-\infty \end{array}
  1. Understand behavior near 3-3: Analyze the function g(x)=2(x+3)g(x) = \frac{2}{(x+3)} to understand its behavior near x=3x = -3. As xx approaches 3-3 from the right (x>3x > -3), the denominator (x+3x+3) approaches 00 from the positive side, making the fraction 2(x+3)\frac{2}{(x+3)} grow without bound in the positive direction.
  2. Calculate right-hand limit: Calculate the right-hand limit of g(x)g(x) as xx approaches 3-3.limx3+g(x)=limx3+(2x+3)=+\lim_{x \to -3^{+}} g(x) = \lim_{x \to -3^{+}} \left(\frac{2}{x+3}\right) = +\infty
  3. Behavior near 3-3 from left: Analyze the function g(x)=2x+3g(x) = \frac{2}{x+3} to understand its behavior near x=3x = -3 from the left side (x<3x < -3).\newlineAs xx approaches 3-3 from the left, the denominator (x+3x+3) approaches 00 from the negative side, making the fraction 2x+3\frac{2}{x+3} grow without bound in the negative direction.
  4. Calculate left-hand limit: Calculate the left-hand limit of g(x)g(x) as xx approaches 3-3.limx3g(x)=limx3(2x+3)=\lim_{x \to -3^{-}} g(x) = \lim_{x \to -3^{-}} \left(\frac{2}{x+3}\right) = -\infty

More problems from Compare linear, exponential, and quadratic growth