Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=(1)/(tan^(2)(x)).
Select the correct description of the one-sided limits of 
g at 
x=0.
Choose 1 answer:
(A)

{:[lim_(x rarr0^(+))g(x)=+oo" and "],[lim_(x rarr0^(-))g(x)=+oo]:}
(B)

{:[lim_(x rarr0^(+))g(x)=+oo" and "],[lim_(x rarr0^(-))g(x)=-oo]:}
(c)

{:[lim_(x rarr0^(+))g(x)=-oo" and "],[lim_(x rarr0^(-))g(x)=+oo]:}
(D)

{:[lim_(x rarr0^(+))g(x)=-oo" and "],[lim_(x rarr0^(-))g(x)=-oo]:}

Let g(x)=1tan2(x) g(x)=\frac{1}{\tan ^{2}(x)} .\newlineSelect the correct description of the one-sided limits of g g at x=0 x=0 .\newlineChoose 11 answer:\newline(A)\newlinelimx0+g(x)=+ and limx0g(x)=+ \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx0+g(x)=+ and limx0g(x)= \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=-\infty \end{array} \newline(c)\newlinelimx0+g(x)= and limx0g(x)=+ \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx0+g(x)= and limx0g(x)= \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=-\infty \end{array}

Full solution

Q. Let g(x)=1tan2(x) g(x)=\frac{1}{\tan ^{2}(x)} .\newlineSelect the correct description of the one-sided limits of g g at x=0 x=0 .\newlineChoose 11 answer:\newline(A)\newlinelimx0+g(x)=+ and limx0g(x)=+ \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=+\infty \end{array} \newline(B)\newlinelimx0+g(x)=+ and limx0g(x)= \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=+\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=-\infty \end{array} \newline(c)\newlinelimx0+g(x)= and limx0g(x)=+ \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=+\infty \end{array} \newline(D)\newlinelimx0+g(x)= and limx0g(x)= \begin{array}{l} \lim _{x \rightarrow 0^{+}} g(x)=-\infty \text { and } \\ \lim _{x \rightarrow 0^{-}} g(x)=-\infty \end{array}
  1. Analyze Behavior of Function: We need to analyze the behavior of the function g(x)=1tan2(x)g(x) = \frac{1}{\tan^2(x)} as xx approaches 00 from both the right (positive) and left (negative) sides.
  2. Limit as xx Approaches 00 from Right: First, let's consider the limit as xx approaches 00 from the right, which is denoted as limx0+g(x)\lim_{x \to 0^+}g(x). Since tan(x)\tan(x) approaches 00 from the right as xx approaches 00, tan2(x)\tan^2(x) also approaches 00. Therefore, 0011 approaches positive infinity because we are dividing by a positive number that is getting closer and closer to zero.
  3. Limit as xx Approaches 00 from Left: Now, let's consider the limit as xx approaches 00 from the left, which is denoted as limx0g(x)\lim_{x \to 0^-}g(x). Since tan(x)\tan(x) approaches 00 from the left as xx approaches 00, tan2(x)\tan^2(x) also approaches 00. Therefore, 0011 approaches positive infinity for the same reason as the right-hand limit: we are dividing by a positive number that is getting closer and closer to zero.
  4. Conclusion: Since both one-sided limits as xx approaches 00 are positive infinity, the correct description of the one-sided limits of gg at x=0x=0 is that both are positive infinity.

More problems from Compare linear, exponential, and quadratic growth