Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (1, 1)(1,\ 1) a solution to this system of inequalities?\newline9x+y99x + y \geq 9\newline5x+12y175x + 12y \geq 17\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (1, 1)(1,\ 1) a solution to this system of inequalities?\newline9x+y99x + y \geq 9\newline5x+12y175x + 12y \geq 17\newlineChoices:\newline(A)yes\newline(B)no
  1. Check Point (1,1)(1, 1): Does the point (1,1)(1, 1) satisfy the inequality 9x+y99x + y \geq 9?\newlineSubstitute x=1x = 1 and y=1y = 1 into the inequality 9x+y99x + y \geq 9.\newline9(1)+199(1) + 1 \geq 9\newline9+199 + 1 \geq 9\newline10910 \geq 9\newlineThe point (1,1)(1, 1) satisfies the inequality 9x+y99x + y \geq 9.
  2. Check Point (1,1)(1, 1): Does the point (1,1)(1, 1) satisfy the inequality 5x+12y175x + 12y \geq 17?\newlineSubstitute x=1x = 1 and y=1y = 1 into the inequality 5x+12y175x + 12y \geq 17.\newline5(1)+12(1)175(1) + 12(1) \geq 17\newline5+12175 + 12 \geq 17\newline171717 \geq 17\newlineThe point (1,1)(1, 1) satisfies the inequality 5x+12y175x + 12y \geq 17.
  3. Verify Solution 1,11, 1: Is 1,11, 1 a solution to the system of inequalities?\newlineSince the point 1,11, 1 satisfies both inequalities:\newline10910 \geq 9 and 171717 \geq 17,\newlinethe point 1,11, 1 is indeed a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of inequalities?