Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int x arcsin xdx=

xarcsinxdx= \int x \arcsin x d x=

Full solution

Q. xarcsinxdx= \int x \arcsin x d x=
  1. Integration by Parts: To solve the integral of xx times the arcsin of xx, we can use integration by parts, which is based on the product rule for differentiation and is given by the formula:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du\newlineHere, we can let u=arcsin(x)u = \arcsin(x) and dv=xdxdv = x \, dx. Then we need to find dudu and vv.
  2. Derivative of arcsin(x): First, we differentiate u=arcsin(x)u = \text{arcsin}(x) with respect to xx to find dudu. The derivative of arcsin(x)\text{arcsin}(x) with respect to xx is 11x2\frac{1}{\sqrt{1 - x^2}}. Therefore, du=(11x2)dxdu = \left(\frac{1}{\sqrt{1 - x^2}}\right) dx.
  3. Integral of xx: Next, we integrate dv=xdxdv = x dx to find vv. The integral of xx with respect to xx is (1/2)x2(1/2)x^2. Therefore, v=(1/2)x2v = (1/2)x^2.
  4. Apply integration by parts: Now we apply the integration by parts formula:\newlinexarcsin(x)dx=uvvdu\int x \arcsin(x) \, dx = uv - \int v \, du\newline= (arcsin(x))(12)x2((12)x2)(11x2)dx(\arcsin(x))(\frac{1}{2})x^2 - \int((\frac{1}{2})x^2)(\frac{1}{\sqrt{1 - x^2}}) \, dx
  5. Simplify the integral: We simplify the integral on the right: \newline(12x2)(11x2)dx\int\left(\frac{1}{2}x^2\right)\left(\frac{1}{\sqrt{1 - x^2}}\right) dx\newline= \frac{\(1\)}{\(2\)}\int\left(\frac{x^\(2\)}{\sqrt{\(1\) - x^\(2\)}}\right) dx
  6. Use substitution: This integral can be tricky, but we can use a substitution to simplify it. Let's use the substitution:\(\newlineLet w=1x2w = 1 - x^2, then dw=2xdxdw = -2x dx.
  7. Solve for xdxx dx: We solve for xdxx dx in terms of dwdw:xdx=dw2x dx = -\frac{dw}{2}
  8. Separate and integrate: Substitute ww and xdxx dx into the integral: 12(x21x2)dx\frac{1}{2}\int\left(\frac{x^2}{\sqrt{1 - x^2}}\right) dx = 12(1ww)(dw2)\frac{1}{2}\int\left(\frac{1 - w}{\sqrt{w}}\right) \left(-\frac{dw}{2}\right) = 14(1ww)dw-\frac{1}{4}\int\left(\frac{1 - w}{\sqrt{w}}\right) dw
  9. Integrate each term: Now we separate the integral into two parts and integrate each one:\newline14(1w)wdw-\frac{1}{4}\int\frac{(1 - w)}{\sqrt{w}} dw\newline= 141wdw+14wwdw-\frac{1}{4}\int\frac{1}{\sqrt{w}} dw + \frac{1}{4}\int\frac{w}{\sqrt{w}} dw\newline= -\frac{\(1\)}{\(4\)}\int w^{-\frac{\(1\)}{\(2\)}} dw + \frac{\(1\)}{\(4\)}\int w^{\frac{\(1\)}{\(2\)}} dw)
  10. Combine and substitute: Integrate each term:\(\newline14(w12)dw=14(2w12)=12w-\frac{1}{4}\int(w^{-\frac{1}{2}}) dw = -\frac{1}{4}(2w^{\frac{1}{2}}) = -\frac{1}{2}\sqrt{w}\newline14(w12)dw=14(23)w32=16w32\frac{1}{4}\int(w^{\frac{1}{2}}) dw = \frac{1}{4}(\frac{2}{3})w^{\frac{3}{2}} = \frac{1}{6}w^{\frac{3}{2}}
  11. Final integral: Combine the two terms and substitute back for w=1x2w = 1 - x^2:12w+16w32-\frac{1}{2}\sqrt{w} + \frac{1}{6}w^{\frac{3}{2}} = 121x2+16(1x2)32-\frac{1}{2}\sqrt{1 - x^2} + \frac{1}{6}(1 - x^2)^{\frac{3}{2}}
  12. Simplify the expression: Now we have the integral we need to subtract from uvuv:xarcsin(x)dx=(arcsin(x))(12)x2((12)1x2+(16)(1x2)32)+C\int x \arcsin(x) \, dx = (\arcsin(x))(\frac{1}{2})x^2 - \left(-\left(\frac{1}{2}\right)\sqrt{1 - x^2} + \left(\frac{1}{6}\right)(1 - x^2)^{\frac{3}{2}}\right) + C
  13. Simplify the expression: Now we have the integral we need to subtract from uv:\newlinexarcsin(x)dx=(arcsin(x))(12)x2((12)1x2+(16)(1x2)32)+C\int x \arcsin(x) dx = (\arcsin(x))(\frac{1}{2})x^2 - (-(\frac{1}{2})\sqrt{1 - x^2} + (\frac{1}{6})(1 - x^2)^{\frac{3}{2}}) + CSimplify the expression:\newlinexarcsin(x)dx=(12)x2arcsin(x)+(12)1x2(16)(1x2)32+C\int x \arcsin(x) dx = (\frac{1}{2})x^2 \arcsin(x) + (\frac{1}{2})\sqrt{1 - x^2} - (\frac{1}{6})(1 - x^2)^{\frac{3}{2}} + C\newlineThis is the final answer in simplified form.

More problems from Csc, sec, and cot of special angles