Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(dx)/((9+x^(2))^(3//2))

dx(9+x2)3/2 \int \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}

Full solution

Q. dx(9+x2)3/2 \int \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}
  1. Trigonometric Substitution: Step 11: Use trigonometric substitution because the integrand has the form (a2+x2)n2(a^2 + x^2)^{\frac{n}{2}}. Let x=3tan(θ)x = 3\tan(\theta), then dx=3sec2(θ)dθdx = 3\sec^2(\theta)d\theta.
  2. Substitute and Simplify: Step 22: Substitute x=3tan(θ)x = 3\tan(\theta) into the integral. The integral becomes 3sec2(θ)dθ(9+(3tan(θ))2)32.\int\frac{3\sec^2(\theta)d\theta}{(9 + (3\tan(\theta))^2)^{\frac{3}{2}}}. Simplify the denominator: 9+9tan2(θ)=9sec2(θ).9 + 9\tan^2(\theta) = 9\sec^2(\theta).
  3. Integral Simplification: Step 33: The integral simplifies to \int\frac{\(3\)\sec^\(2\)(\theta)d\theta}{\(9\)\sec^\(3\)(\theta)} = \int\frac{\(3\)\sec^\(2\)(\theta)d\theta}{\(9\)\sec^\(3\)(\theta)} = \int\left(\frac{\(1\)}{\(3\)}\right)\sec^{\(-1\)}(\theta)d\theta = \left(\frac{\(1\)}{\(3\)}\right)\int\cos(\theta)d\theta.
  4. Integrate Cosine: Step \(4: Integrate (13)cos(θ)dθ(\frac{1}{3})\cos(\theta)\,d\theta. The integral of cos(θ)\cos(\theta) is sin(θ)\sin(\theta), so the integral becomes (13)sin(θ)+C(\frac{1}{3})\sin(\theta) + C.
  5. Substitute Back for Theta: Step 55: Substitute back for θ\theta using x=3tan(θ)x = 3\tan(\theta). We have tan(θ)=x3\tan(\theta) = \frac{x}{3}, so θ=arctan(x3)\theta = \arctan(\frac{x}{3}). Therefore, sin(θ)=sin(arctan(x3))\sin(\theta) = \sin(\arctan(\frac{x}{3})).
  6. Use Trigonometric Identity: Step 66: Use the identity sin(arctan(u))=u1+u2\sin(\arctan(u)) = \frac{u}{\sqrt{1 + u^2}} to find sin(arctan(x3))=x31+(x3)2=x9+x2\sin(\arctan(\frac{x}{3})) = \frac{\frac{x}{3}}{\sqrt{1 + (\frac{x}{3})^2}} = \frac{x}{\sqrt{9 + x^2}}.
  7. Final Answer: Step 77: The final answer for the indefinite integral is (13)(x9+x2)+C(\frac{1}{3})(\frac{x}{\sqrt{9 + x^2}}) + C.

More problems from Evaluate definite integrals using the chain rule