Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(dx)/(3sqrt(x-1)-4root(3)(x-1))

dx3x14x13 \int \frac{d x}{3 \sqrt{x-1}-4 \sqrt[3]{x-1}}

Full solution

Q. dx3x14x13 \int \frac{d x}{3 \sqrt{x-1}-4 \sqrt[3]{x-1}}
  1. Write Integral: Write down the integral to be solved.\newlineI=dx3x14x13I = \int \frac{dx}{3\sqrt{x-1} - 4\sqrt[3]{x-1}}
  2. Make Substitution: To simplify the integral, let's make a substitution. Let u=x1u = x - 1, which implies that du=dxdu = dx.\newlineI=du3u4u3I = \int \frac{du}{3\sqrt{u} - 4\sqrt[3]{u}}
  3. Rewrite in Terms of u: Rewrite the integral in terms of u.\newlineI=du3u124u13I = \int \frac{du}{3u^{\frac{1}{2}} - 4u^{\frac{1}{3}}}
  4. Simplify Denominator: To integrate this expression, we need to find a way to simplify the denominator. One common technique is to multiply the numerator and the denominator by the conjugate of the denominator to rationalize it. However, in this case, the conjugate involves complex expressions, and it might not lead to a simpler form. Instead, we should look for a different approach, such as partial fraction decomposition or another substitution.
  5. Try Another Substitution: Since the denominator has terms with uu raised to fractional powers, partial fraction decomposition is not straightforward. We need to consider another substitution or method to simplify the integral. Let's try another substitution to simplify the denominator. Let's denote v=u16v = u^{\frac{1}{6}}, which implies u=v6u = v^6 and du=6v5dvdu = 6v^5 dv.\newlineI=6v5dv3v34v2I = \int \frac{6v^5 dv}{3v^3 - 4v^2}
  6. Cancel Common Factors: Simplify the integral by canceling out common factors.\newlineI=6v5dv3v2(v43)I = \int\frac{6v^5 \, dv}{3v^2(v - \frac{4}{3})}\newlineI=2v3dvv43I = 2\int\frac{v^3 \, dv}{v - \frac{4}{3}}
  7. Perform Polynomial Division: Now, we can perform long division or use polynomial division to simplify the integral further. Let's divide v3v^3 by v43v - \frac{4}{3}.
  8. Integrate Each Term: Perform the polynomial division.\newlinev3v^3 divided by vv gives v2v^2.\newlineMultiply v2v^2 by (v43)(v - \frac{4}{3}) to get v343v2v^3 - \frac{4}{3}v^2.\newlineSubtract this from v3v^3 to get 43v2\frac{4}{3}v^2.\newlineNow, divide 43v2\frac{4}{3}v^2 by vv to get vv00.\newlineMultiply vv00 by (v43)(v - \frac{4}{3}) to get vv33.\newlineSubtract this from 43v2\frac{4}{3}v^2 to get vv55.\newlineFinally, divide vv55 by vv to get vv88.\newlineMultiply vv88 by (v43)(v - \frac{4}{3}) to get v2v^211.\newlineSubtract this from vv55 to get a remainder of v2v^233.\newlineSo, v3v^3 divided by (v43)(v - \frac{4}{3}) is v2v^266 with a remainder of v2v^233.
  9. Substitute Back to x: Rewrite the integral with the result of the polynomial division. I = 2\int(v^2 + \frac{4}{3}v + \frac{16}{9}) dv - 2\int\frac{64}{27}}{v - \frac{4}{3}} dv
  10. Substitute Back to x: Rewrite the integral with the result of the polynomial division.\newlineI=2(v2+43v+169)dv2(6427)/(v43)dvI = 2\int(v^2 + \frac{4}{3}v + \frac{16}{9}) dv - 2\int(\frac{64}{27})/(v - \frac{4}{3}) dvIntegrate each term separately.\newlineI=2[v33+(43)(v22)+(169)v]2(6427)lnv43+CI = 2[\frac{v^3}{3} + (\frac{4}{3})(\frac{v^2}{2}) + (\frac{16}{9})v] - 2*(\frac{64}{27})\ln|v - \frac{4}{3}| + C\newlineI=2[v33+(23)v2+(169)v](12827)lnv43+CI = 2[\frac{v^3}{3} + (\frac{2}{3})v^2 + (\frac{16}{9})v] - (\frac{128}{27})\ln|v - \frac{4}{3}| + C
  11. Substitute Back to x: Rewrite the integral with the result of the polynomial division.\newlineI=2(v2+43v+169)dv2(6427)/(v43)dvI = 2\int(v^2 + \frac{4}{3}v + \frac{16}{9}) dv - 2\int(\frac{64}{27})/(v - \frac{4}{3}) dvIntegrate each term separately.\newlineI=2[(v3)3+(43)(v22)+(169)v]2(6427)lnv43+CI = 2[\frac{(v^3)}{3} + (\frac{4}{3})(\frac{v^2}{2}) + (\frac{16}{9})v] - 2*(\frac{64}{27})\ln|v - \frac{4}{3}| + C\newlineI=2[(v3)3+(23)v2+(169)v](12827)lnv43+CI = 2[\frac{(v^3)}{3} + (\frac{2}{3})v^2 + (\frac{16}{9})v] - (\frac{128}{27})\ln|v - \frac{4}{3}| + CSubstitute back the original variable u=v6u = v^6 to express the integral in terms of x.\newlineI=2[((u1/6)3)3+(23)(u1/6)2+(169)u1/6](12827)lnu1/643+CI = 2[\frac{((u^{1/6})^3)}{3} + (\frac{2}{3})(u^{1/6})^2 + (\frac{16}{9})u^{1/6}] - (\frac{128}{27})\ln|u^{1/6} - \frac{4}{3}| + C\newlineI=2[(u1/2)3+(23)u1/3+(169)u1/6](12827)lnu1/643+CI = 2[\frac{(u^{1/2})}{3} + (\frac{2}{3})u^{1/3} + (\frac{16}{9})u^{1/6}] - (\frac{128}{27})\ln|u^{1/6} - \frac{4}{3}| + C
  12. Substitute Back to x: Rewrite the integral with the result of the polynomial division.\newlineI=2(v2+43v+169)dv2(6427)/(v43)dvI = 2\int(v^2 + \frac{4}{3}v + \frac{16}{9}) dv - 2\int(\frac{64}{27})/(v - \frac{4}{3}) dvIntegrate each term separately.\newlineI=2[(v3)3+(43)(v22)+(169)v]2(6427)lnv43+CI = 2[\frac{(v^3)}{3} + (\frac{4}{3})(\frac{v^2}{2}) + (\frac{16}{9})v] - 2*(\frac{64}{27})\ln|v - \frac{4}{3}| + C\newlineI=2[(v3)3+(23)v2+(169)v](12827)lnv43+CI = 2[\frac{(v^3)}{3} + (\frac{2}{3})v^2 + (\frac{16}{9})v] - (\frac{128}{27})\ln|v - \frac{4}{3}| + CSubstitute back the original variable u=v6u = v^6 to express the integral in terms of x.\newlineI=2[((u1/6)3)3+(23)(u1/6)2+(169)u1/6](12827)lnu1/643+CI = 2[\frac{((u^{1/6})^3)}{3} + (\frac{2}{3})(u^{1/6})^2 + (\frac{16}{9})u^{1/6}] - (\frac{128}{27})\ln|u^{1/6} - \frac{4}{3}| + C\newlineI=2[(u1/2)3+(23)u1/3+(169)u1/6](12827)lnu1/643+CI = 2[\frac{(u^{1/2})}{3} + (\frac{2}{3})u^{1/3} + (\frac{16}{9})u^{1/6}] - (\frac{128}{27})\ln|u^{1/6} - \frac{4}{3}| + CSubstitute back the original variable x=u+1x = u + 1 to express the integral in terms of x.\newlineI=2[((x1)1/2)3+(23)(x1)1/3+(169)(x1)1/6](12827)ln(x1)1/643+CI = 2[\frac{((x-1)^{1/2})}{3} + (\frac{2}{3})(x-1)^{1/3} + (\frac{16}{9})(x-1)^{1/6}] - (\frac{128}{27})\ln|(x-1)^{1/6} - \frac{4}{3}| + C