Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(1)/(xsqrt(x+1))dx

1xx+1dx \int \frac{1}{x \sqrt{x+1}} d x

Full solution

Q. 1xx+1dx \int \frac{1}{x \sqrt{x+1}} d x
  1. Substitution: Let's do a substitution. Let u=x+1u = x + 1, which means du=dxdu = dx and x=u1x = u - 1.
  2. Split Fraction: Now we substitute xx and dxdx in the integral: 1(u1)udu\int \frac{1}{(u - 1)\sqrt{u}} \, du.
  3. Simplify Terms: This looks a bit messy, let's split the fraction: (1uu1u2u)du\int(\frac{1}{u\sqrt{u}} - \frac{1}{u^2\sqrt{u}}) \, du.
  4. Integrate Term by Term: Simplify the terms: (1u321u52)du\int(\frac{1}{u^{\frac{3}{2}}} - \frac{1}{u^{\frac{5}{2}}}) \, du.
  5. Integrate First Term: Now we can integrate term by term: 1u3/2du1u5/2du\int \frac{1}{u^{3/2}} \, du - \int \frac{1}{u^{5/2}} \, du.
  6. Integrate Second Term: Integrate the first term: 2/u1/2-2/u^{1/2} (because undu=un+1/(n+1)\int u^{-n} du = u^{-n+1}/(-n+1)).
  7. Combine Terms: Integrate the second term: 23u32\frac{2}{3}u^{\frac{3}{2}} (because umdu=um+1m+1\int u^{-m} du = \frac{u^{-m+1}}{-m+1}).
  8. Substitute Back: Combine the two terms: 2u1/2+23u3/2+C-\frac{2}{u^{1/2}} + \frac{2}{3}u^{3/2} + C, where CC is the constant of integration.
  9. Correct Integration: Substitute back u=x+1u = x + 1: 2(x+1)12+23(x+1)32+C-\frac{2}{(x + 1)^{\frac{1}{2}}} + \frac{2}{3}(x + 1)^{\frac{3}{2}} + C.
  10. Correct Integration: Substitute back u=x+1u = x + 1: 2(x+1)12+23(x+1)32+C-\frac{2}{(x + 1)^{\frac{1}{2}}} + \frac{2}{3}(x + 1)^{\frac{3}{2}} + C.Oops, I made a mistake in the integration step. The correct integration of 1u32\frac{1}{u^{\frac{3}{2}}} should be 2u12,-\frac{2}{u^{\frac{1}{2}}}, but for 1u52,\frac{1}{u^{\frac{5}{2}}}, it should be 23u32,\frac{2}{3u^{\frac{3}{2}}}, not 23u32\frac{2}{3}u^{\frac{3}{2}}. Let's correct that.