Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(2)2x((x^(2))/(2)+3)^(5)dx

022x(x22+3)5dx \int_{0}^{2} 2 x\left(\frac{x^{2}}{2}+3\right)^{5} d x

Full solution

Q. 022x(x22+3)5dx \int_{0}^{2} 2 x\left(\frac{x^{2}}{2}+3\right)^{5} d x
  1. Use Substitution: Let's use substitution. Let u=x22+3u = \frac{x^2}{2} + 3. Then, du=xdxdu = x dx. We need to adjust the 2xdx2x dx to fit dudu, so we multiply dudu by 22 to get 2du=2xdx2du = 2x dx.
  2. Adjust for du: Now, we substitute into the integral: 022x(x22+3)5dx=u(0)u(2)u52du\int_{0}^{2} 2x\left(\frac{x^2}{2} + 3\right)^5dx = \int_{u(0)}^{u(2)} u^5 \cdot 2du.
  3. Substitute into Integral: We need to find the new limits of integration for uu. When x=0x = 0, u=(02/2+3)=3u = (0^2/2 + 3) = 3. When x=2x = 2, u=(22/2+3)=4+3=7u = (2^2/2 + 3) = 4 + 3 = 7. So, the new limits are from 33 to 77.
  4. Find New Limits for uu: Now we can integrate: 37u52du=237u5du\int_{3}^{7} u^5 \cdot 2\,du = 2 \cdot \int_{3}^{7} u^5 \,du.
  5. Integrate u5u^5: Integrating u5u^5 gives us (1/6)u6(1/6)u^6. So, we have 2×(1/6)u62 \times (1/6)u^6 from 33 to 77.
  6. Calculate Powers: Plugging in the limits, we get 2×(16)×(7636)2 \times \left(\frac{1}{6}\right) \times \left(7^6 - 3^6\right).
  7. Subtract Numbers: Calculating the powers, we get 2×(16)×(117649729)2 \times \left(\frac{1}{6}\right) \times (117649 - 729).
  8. Multiply Through: Subtracting the two numbers gives us 2×(16)×1169202 \times \left(\frac{1}{6}\right) \times 116920.
  9. Final Calculation: Multiplying through, we get (26)×116920=(13)×116920(\frac{2}{6}) \times 116920 = (\frac{1}{3}) \times 116920.
  10. Final Calculation: Multiplying through, we get (26)×116920=(13)×116920(\frac{2}{6}) \times 116920 = (\frac{1}{3}) \times 116920. Finally, we calculate (13)×116920(\frac{1}{3}) \times 116920 to get 38973.3338973.33, but this is where I made a mistake. The correct calculation should be (13)×116920=38973.333...(\frac{1}{3}) \times 116920 = 38973.333..., which simplifies to 38973+1338973 + \frac{1}{3}.

More problems from Evaluate definite integrals using the chain rule