Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^((1)/(2)pi^(2))cos sqrt(2t)dt

22. 012π2cos2tdt \int_{0}^{\frac{1}{2} \pi^{2}} \cos \sqrt{2 t} d t

Full solution

Q. 22. 012π2cos2tdt \int_{0}^{\frac{1}{2} \pi^{2}} \cos \sqrt{2 t} d t
  1. Substitution: Let's do a substitution: u=2tu = \sqrt{2t}, which means t=u22t = \frac{u^2}{2}. Now we need to find dtdt in terms of dudu.
  2. Differentiate to find dtdt: Differentiate both sides with respect to uu to find dtdt: dt=udu2dt = \frac{u \, du}{\sqrt{2}}.
  3. Change limits of integration: Now we change the limits of integration. When t=0t = 0, u=20=0u = \sqrt{2\cdot 0} = 0. When t=(12)π2t = \left(\frac{1}{2}\right)\pi^2, u=2(12)π2=πu = \sqrt{2\cdot \left(\frac{1}{2}\right)\pi^2} = \pi.
  4. Substitute into integral: Substitute everything into the integral: 0πcos(u)(u2)du\int_{0}^{\pi} \cos(u) \cdot \left(\frac{u}{\sqrt{2}}\right) \, du.
  5. Simplify the integral: Simplify the integral: 12\frac{1}{\sqrt{2}} 0πucos(u)du\int_{0}^{\pi} u \cos(u) \, du.
  6. Integration by parts: This is an integral that requires integration by parts. Let's choose v=uv = u and dw=cos(u)dudw = \cos(u) du.
  7. Find dvdv and ww: Now we find dvdv and ww. dv=dudv = du, so v=uv = u. To find ww, we integrate dwdw: w=cos(u)du=sin(u)w = \int \cos(u) \, du = \sin(u).
  8. Apply integration by parts: Apply integration by parts: (12)[uvvdu](\frac{1}{\sqrt{2}}) \cdot [uv - \int v \, du] from 00 to π\pi.
  9. Evaluate definite integral: Plug in the values for uu and ww: 12\frac{1}{\sqrt{2}} * [usin(u)udu][u \sin(u) - \int u \, du] from 00 to π\pi.
  10. Evaluate at upper limit: Now we need to integrate uduu \, \mathrm{d}u: udu=u22\int u \, \mathrm{d}u = \frac{u^2}{2}.
  11. Evaluate at lower limit: Plug everything in and evaluate the definite integral: (12)[usin(u)u22](\frac{1}{\sqrt{2}}) \cdot [u \sin(u) - \frac{u^2}{2}] from 00 to π\pi.
  12. Subtract lower from upper: Evaluate at the upper limit: (12)[πsin(π)π22]=(12)[0π22](\frac{1}{\sqrt{2}}) * [\pi \sin(\pi) - \frac{\pi^2}{2}] = (\frac{1}{\sqrt{2}}) * [0 - \frac{\pi^2}{2}].
  13. Subtract lower from upper: Evaluate at the upper limit: (1/2)[πsin(π)π2/2]=(1/2)[0π2/2](1/\sqrt{2}) * [\pi \sin(\pi) - \pi^2/2] = (1/\sqrt{2}) * [0 - \pi^2/2].Evaluate at the lower limit: (1/2)[0sin(0)02/2]=0(1/\sqrt{2}) * [0 \sin(0) - 0^2/2] = 0.
  14. Subtract lower from upper: Evaluate at the upper limit: (1/2)[πsin(π)π2/2]=(1/2)[0π2/2](1/\sqrt{2}) * [\pi \sin(\pi) - \pi^2/2] = (1/\sqrt{2}) * [0 - \pi^2/2].Evaluate at the lower limit: (1/2)[0sin(0)02/2]=0(1/\sqrt{2}) * [0 \sin(0) - 0^2/2] = 0.Subtract the lower limit from the upper limit: (1/2)[π2/2]0=(π2)/(22)(1/\sqrt{2}) * [-\pi^2/2] - 0 = -(\pi^2)/(2\sqrt{2}).

More problems from Evaluate definite integrals using the chain rule