Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
sin x=(3)/(sqrt58) and 
tan y=1, and that angles 
x and 
y are both in Quadrant I, find the exact value of 
cos(x-y), in simplest radical form.
Answer:

Given that sinx=358 \sin x=\frac{3}{\sqrt{58}} and tany=1 \tan y=1 , and that angles x x and y y are both in Quadrant I, find the exact value of cos(xy) \cos (x-y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that sinx=358 \sin x=\frac{3}{\sqrt{58}} and tany=1 \tan y=1 , and that angles x x and y y are both in Quadrant I, find the exact value of cos(xy) \cos (x-y) , in simplest radical form.\newlineAnswer:
  1. Given Information: We are given sinx=358\sin x = \frac{3}{\sqrt{58}} and tany=1\tan y = 1. Since both angles are in Quadrant I, all trigonometric functions are positive. We need to find cos(xy)\cos(x-y). To do this, we will use the cosine difference identity: cos(xy)=cosxcosy+sinxsiny\cos(x-y) = \cos x \cos y + \sin x \sin y. First, we need to find cosx\cos x and cosy\cos y.
  2. Finding cosx\cos x: To find cosx\cos x, we use the Pythagorean identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1. We have sinx=358\sin x = \frac{3}{\sqrt{58}}, so sin2x=(358)2=958\sin^2 x = \left(\frac{3}{\sqrt{58}}\right)^2 = \frac{9}{58}. Therefore, cos2x=1sin2x=1958=4958\cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{58} = \frac{49}{58}. Since xx is in Quadrant I, cosx\cos x is positive, so cosx=4958=758\cos x = \sqrt{\frac{49}{58}} = \frac{7}{\sqrt{58}}.
  3. Finding cosy\cos y: For angle yy, we have tany=1\tan y = 1. In Quadrant I, this means that siny=cosy\sin y = \cos y because tany=sinycosy\tan y = \frac{\sin y}{\cos y}. Since tany=1\tan y = 1, siny=cosy\sin y = \cos y. To find the value of siny\sin y and cosy\cos y, we use the Pythagorean identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1. Since siny=cosy\sin y = \cos y, we have yy11. Therefore, yy22, and yy33.
  4. Using Cosine Difference Identity: Now that we have cosx=758\cos x = \frac{7}{\sqrt{58}} and cosy=22\cos y = \frac{\sqrt{2}}{2}, and we know sinx=358\sin x = \frac{3}{\sqrt{58}} and siny=22\sin y = \frac{\sqrt{2}}{2}, we can use the cosine difference identity to find cos(xy)\cos(x-y). So, cos(xy)=cosxcosy+sinxsiny=(758)(22)+(358)(22)\cos(x-y) = \cos x \cos y + \sin x \sin y = \left(\frac{7}{\sqrt{58}}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{3}{\sqrt{58}}\right)\left(\frac{\sqrt{2}}{2}\right).
  5. Simplifying Expression: We simplify the expression: $\cos(x-y) = \left(\frac{\(7\)}{\sqrt{\(58\)}}\right)\left(\frac{\sqrt{\(2\)}}{\(2\)}\right) + \left(\frac{\(3\)}{\sqrt{\(58\)}}\right)\left(\frac{\sqrt{\(2\)}}{\(2\)}\right) = \left(\frac{\(7\)\sqrt{\(2\)}}{\(2\)\sqrt{\(58\)}}\right) + \left(\frac{\(3\)\sqrt{\(2\)}}{\(2\)\sqrt{\(58\)}}\right) = \frac{\(7\)\sqrt{\(2\)} + \(3\)\sqrt{\(2\)}}{\(2\)\sqrt{\(58\)}} = \frac{\(10\)\sqrt{\(2\)}}{\(2\)\sqrt{\(58\)}} = \frac{\(5\)\sqrt{\(2\)}}{\sqrt{\(58\)}}.
  6. Rationalizing Denominator: To rationalize the denominator, we multiply the numerator and the denominator by \(\sqrt{58}\): \(\cos(x-y) = \frac{5\sqrt{2}}{\sqrt{58}} \cdot \frac{\sqrt{58}}{\sqrt{58}} = \frac{5\sqrt{2}\sqrt{58}}{\sqrt{58}\sqrt{58}} = \frac{5\sqrt{116}}{58}\).
  7. Simplifying Square Root: We simplify the square root in the numerator: \(\sqrt{116} = \sqrt{(4\cdot29)} = 2\sqrt{29}\). So, \(\cos(x-y) = \frac{5\cdot2\sqrt{29}}{58} = \frac{10\sqrt{29}}{58}\).
  8. Final Simplification: Finally, we simplify the fraction by dividing both the numerator and the denominator by \(2\): \(\cos(x-y) = \frac{10\sqrt{29}}{58} / \left(\frac{2}{2}\right) = \frac{5\sqrt{29}}{29}\).

More problems from Find trigonometric ratios using multiple identities