Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos A=(sqrt12)/(5) and 
cos B=(sqrt28)/(6), and that angles 
A and 
B are both in Quadrant I, find the exact value of 
cos(A-B), in simplest radical form.
Answer:

Given that cosA=125 \cos A=\frac{\sqrt{12}}{5} and cosB=286 \cos B=\frac{\sqrt{28}}{6} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosA=125 \cos A=\frac{\sqrt{12}}{5} and cosB=286 \cos B=\frac{\sqrt{28}}{6} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(AB) \cos (A-B) , in simplest radical form.\newlineAnswer:
  1. Use Cosine Difference Identity: To find the cosine of the difference between two angles, we use the cosine difference identity: cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B).
  2. Find Sine Values: We already have the values for cos(A)\cos(A) and cos(B)\cos(B). Now we need to find sin(A)\sin(A) and sin(B)\sin(B). Since AA and BB are in Quadrant II, their sine values will be positive.
  3. Calculate sin(A)\sin(A): To find sin(A)\sin(A), we use the Pythagorean identity: sin2(A)+cos2(A)=1\sin^2(A) + \cos^2(A) = 1. We know cos(A)=(12)/5\cos(A) = (\sqrt{12})/5, so we can solve for sin(A)\sin(A).\newlinesin2(A)=1cos2(A)=1(12/5)2=1(12/25)=(25/25)(12/25)=13/25\sin^2(A) = 1 - \cos^2(A) = 1 - (\sqrt{12}/5)^2 = 1 - (12/25) = (25/25) - (12/25) = 13/25.\newlineTherefore, sin(A)=13/25=(13)/5\sin(A) = \sqrt{13/25} = (\sqrt{13})/5.
  4. Calculate sin(B)\sin(B): Similarly, to find sin(B)\sin(B), we use the Pythagorean identity: sin2(B)+cos2(B)=1\sin^2(B) + \cos^2(B) = 1. We know cos(B)=(28)/6\cos(B) = (\sqrt{28})/6, so we can solve for sin(B)\sin(B).\newlinesin2(B)=1cos2(B)=1(28/6)2=1(28/36)=(36/36)(28/36)=8/36=2/9\sin^2(B) = 1 - \cos^2(B) = 1 - (\sqrt{28}/6)^2 = 1 - (28/36) = (36/36) - (28/36) = 8/36 = 2/9.\newlineTherefore, sin(B)=2/9=(2)/3\sin(B) = \sqrt{2/9} = (\sqrt{2})/3.
  5. Calculate cos(AB)\cos(A - B): Now we can use the values we have found to calculate cos(AB)\cos(A - B) using the cosine difference identity:\newlinecos(AB)=cos(A)cos(B)+sin(A)sin(B)=(12/5)(28/6)+(13/5)(2/3)\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B) = (\sqrt{12}/5)(\sqrt{28}/6) + (\sqrt{13}/5)(\sqrt{2}/3).
  6. Simplify Expression: Simplify the expression by multiplying the radicals and fractions: cos(AB)=12×285×6+13×25×3=33630+2615\cos(A - B) = \frac{\sqrt{12 \times 28}}{5 \times 6} + \frac{\sqrt{13 \times 2}}{5 \times 3} = \frac{\sqrt{336}}{30} + \frac{\sqrt{26}}{15}.
  7. Simplify Square Root: Simplify the square root of 336336 by factoring out perfect squares: 336=16×21=4×21\sqrt{336} = \sqrt{16 \times 21} = 4 \times \sqrt{21}. So, cos(AB)=4×2130+2615\cos(A - B) = \frac{4 \times \sqrt{21}}{30} + \frac{\sqrt{26}}{15}.
  8. Combine Terms: Now we simplify the fractions: (421)/30=(221)/15(4 \cdot \sqrt{21})/30 = (2 \cdot \sqrt{21})/15. So, cos(AB)=(221)/15+(26)/15\cos(A - B) = (2 \cdot \sqrt{21})/15 + (\sqrt{26})/15.
  9. Combine Terms: Now we simplify the fractions: (421)/30=(221)/15(4 \cdot \sqrt{21})/30 = (2 \cdot \sqrt{21})/15. So, cos(AB)=(221)/15+(26)/15\cos(A - B) = (2 \cdot \sqrt{21})/15 + (\sqrt{26})/15. Since both terms have a common denominator, we can combine them: cos(AB)=((221)+26)/15\cos(A - B) = ((2 \cdot \sqrt{21}) + \sqrt{26})/15.

More problems from Transformations of linear functions